These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 24883431)

  • 1. Graphene as an atomically thin barrier to Cu diffusion into Si.
    Hong J; Lee S; Lee S; Han H; Mahata C; Yeon HW; Koo B; Kim SI; Nam T; Byun K; Min BW; Kim YW; Kim H; Joo YC; Lee T
    Nanoscale; 2014 Jul; 6(13):7503-11. PubMed ID: 24883431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical and Lateral Copper Transport through Graphene Layers.
    Li L; Chen X; Wang CH; Cao J; Lee S; Tang A; Ahn C; Singha Roy S; Arnold MS; Wong HS
    ACS Nano; 2015 Aug; 9(8):8361-7. PubMed ID: 26222951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel graphene barrier against moisture by multiple stacking large-grain graphene.
    Gomasang P; Kawahara K; Yasuraoka K; Maruyama M; Ago H; Okada S; Ueno K
    Sci Rep; 2019 Mar; 9(1):3777. PubMed ID: 30846794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer-free multi-layer graphene as a diffusion barrier.
    Mehta R; Chugh S; Chen Z
    Nanoscale; 2017 Feb; 9(5):1827-1833. PubMed ID: 28116400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects.
    Majumder P; Takoudis C
    Nanotechnology; 2008 May; 19(20):205202. PubMed ID: 21825734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect.
    An BS; Kwon Y; Oh JS; Lee C; Choi S; Kim H; Lee M; Pae S; Yang CW
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3104-3113. PubMed ID: 31845581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.
    Shin DC; Kim MR; Lee JH; Choi BH; Lee HK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5631-7. PubMed ID: 22966623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ TEM study of stability of TaRhx diffusion barriers using a novel sample preparation method.
    Dalili N; Li P; Kupsta M; Liu Q; Ivey DG
    Micron; 2014 Mar; 58():25-31. PubMed ID: 24296039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronically transparent graphene barriers against unwanted doping of silicon.
    Wong CP; Koek TJ; Liu Y; Loh KP; Goh KE; Troadec C; Nijhuis CA
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20464-72. PubMed ID: 25329365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amorphous Ta
    An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW
    Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Growth of Highly Reproducible Single-Layer Graphene Deposition on Cu Foil by Indigenously Developed LPCVD Setup.
    Kashyap PK; Sharma I; Gupta BK
    ACS Omega; 2019 Feb; 4(2):2893-2901. PubMed ID: 31459519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.
    Hong J; Lee S; Seo J; Pyo S; Kim J; Lee T
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3554-61. PubMed ID: 25632798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Layers of Graphene for Microbial Corrosion Prevention.
    Chilkoor G; Shrestha N; Kutana A; Tripathi M; Robles Hernández FC; Yakobson BI; Meyyappan M; Dalton AB; Ajayan PM; Rahman MM; Gadhamshetty V
    ACS Nano; 2021 Jan; 15(1):447-454. PubMed ID: 33381965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate considerations for graphene synthesis on thin copper films.
    Howsare CA; Weng X; Bojan V; Snyder D; Robinson JA
    Nanotechnology; 2012 Apr; 23(13):135601. PubMed ID: 22418897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass transport mechanism of cu species at the metal/dielectric interfaces with a graphene barrier.
    Zhao Y; Liu Z; Sun T; Zhang L; Jie W; Wang X; Xie Y; Tsang YH; Long H; Chai Y
    ACS Nano; 2014 Dec; 8(12):12601-11. PubMed ID: 25423484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of gas permeation through single layer graphene membranes.
    Drahushuk LW; Strano MS
    Langmuir; 2012 Dec; 28(48):16671-8. PubMed ID: 23101879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-W Barrier Layers for Metallization of Copper Interconnects: Thermal Performance Analysis.
    Oliveira BMC; Santos RF; Piedade AP; Ferreira PJ; Vieira MF
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si.
    Hsieh SH; Chen WJ; Chien CM
    Nanomaterials (Basel); 2015 Nov; 5(4):1840-1852. PubMed ID: 28347099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of multi-layer graphene capping on Cu interconnects.
    Kang CG; Lim SK; Lee S; Lee SK; Cho C; Lee YG; Hwang HJ; Kim Y; Choi HJ; Choe SH; Ham MH; Lee BH
    Nanotechnology; 2013 Mar; 24(11):115707. PubMed ID: 23455515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.