These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 24884692)

  • 1. Regulatory motifs identified from a maize developmental coexpression network.
    Downs GS; Liseron-Monfils C; Lukens LN
    Genome; 2014 Mar; 57(3):181-4. PubMed ID: 24884692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A developmental transcriptional network for maize defines coexpression modules.
    Downs GS; Bi YM; Colasanti J; Wu W; Chen X; Zhu T; Rothstein SJ; Lukens LN
    Plant Physiol; 2013 Apr; 161(4):1830-43. PubMed ID: 23388120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promzea: a pipeline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas.
    Liseron-Monfils C; Lewis T; Ashlock D; McNicholas PD; Fauteux F; Strömvik M; Raizada MN
    BMC Plant Biol; 2013 Mar; 13():42. PubMed ID: 23497159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage.
    Hwang SG; Kim KH; Lee BM; Moon JC
    Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development.
    Liu Y; Xie S; Yu J
    PLoS One; 2016; 11(2):e0148287. PubMed ID: 26829553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation.
    Andorf CM; Kopylov M; Dobbs D; Koch KE; Stroupe ME; Lawrence CJ; Bass HW
    J Genet Genomics; 2014 Dec; 41(12):627-47. PubMed ID: 25527104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice.
    Ficklin SP; Feltus FA
    Plant Physiol; 2011 Jul; 156(3):1244-56. PubMed ID: 21606319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
    Li L; Briskine R; Schaefer R; Schnable PS; Myers CL; Flagel LE; Springer NM; Muehlbauer GJ
    BMC Genomics; 2016 Nov; 17(1):875. PubMed ID: 27814670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs.
    Jiménez-López S; Mancera-Martínez E; Donayre-Torres A; Rangel C; Uribe L; March S; Jiménez-Sánchez G; Sánchez de Jiménez E
    Plant Cell Physiol; 2011 Oct; 52(10):1719-33. PubMed ID: 21880676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response.
    Ma S; Ding Z; Li P
    BMC Plant Biol; 2017 Aug; 17(1):131. PubMed ID: 28764653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of omic networks in a developmental atlas of maize.
    Walley JW; Sartor RC; Shen Z; Schmitz RJ; Wu KJ; Urich MA; Nery JR; Smith LG; Schnable JC; Ecker JR; Briggs SP
    Science; 2016 Aug; 353(6301):814-8. PubMed ID: 27540173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Large-Scale Phenotyping and Transcriptomics in Maize Reveals a Robust Growth Regulatory Network.
    Baute J; Herman D; Coppens F; De Block J; Slabbinck B; Dell'Acqua M; Pè ME; Maere S; Nelissen H; Inzé D
    Plant Physiol; 2016 Mar; 170(3):1848-67. PubMed ID: 26754667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development.
    Xiong W; Wang C; Zhang X; Yang Q; Shao R; Lai J; Du C
    Plant J; 2017 Dec; 92(6):1143-1156. PubMed ID: 29072883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation.
    Zhan J; Thakare D; Ma C; Lloyd A; Nixon NM; Arakaki AM; Burnett WJ; Logan KO; Wang D; Wang X; Drews GN; Yadegari R
    Plant Cell; 2015 Mar; 27(3):513-31. PubMed ID: 25783031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The circadian clock-associated gene gigantea1 affects maize developmental transitions.
    Bendix C; Mendoza JM; Stanley DN; Meeley R; Harmon FG
    Plant Cell Environ; 2013 Jul; 36(7):1379-90. PubMed ID: 23336247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels.
    Tian T; You Q; Yan H; Xu W; Su Z
    J Genet Genomics; 2018 Jul; 45(7):351-360. PubMed ID: 30057343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stage-specific transcriptional response.
    Plett D; Baumann U; Schreiber AW; Holtham L; Kalashyan E; Toubia J; Nau J; Beatty M; Rafalski A; Dhugga KS; Tester M; Garnett T; Kaiser BN
    Plant Biotechnol J; 2016 Jan; 14(1):342-53. PubMed ID: 26038196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatiotemporal transcriptomic network dynamically modulates stalk development in maize.
    Le L; Guo W; Du D; Zhang X; Wang W; Yu J; Wang H; Qiao H; Zhang C; Pu L
    Plant Biotechnol J; 2022 Dec; 20(12):2313-2331. PubMed ID: 36070002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide comparative analysis of digital gene expression tag profiles during maize ear development.
    Liu H; Yang X; Liao X; Zuo T; Qin C; Cao S; Dong L; Zhou H; Zhang Y; Liu S; Shen Y; Lin H; Lübberstedt T; Zhang Z; Pan G
    Genomics; 2015 Jul; 106(1):52-60. PubMed ID: 25847872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene Expression Data.
    Yu CP; Li WH
    Methods Mol Biol; 2017; 1629():271-282. PubMed ID: 28623591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.