These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 24884804)
1. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Pernicová Z; Slabáková E; Fedr R; Šimečková Š; Jaroš J; Suchánková T; Bouchal J; Kharaishvili G; Král M; Kozubík A; Souček K Mol Cancer; 2014 May; 13():113. PubMed ID: 24884804 [TBL] [Abstract][Full Text] [Related]
2. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Uysal-Onganer P; Kawano Y; Caro M; Walker MM; Diez S; Darrington RS; Waxman J; Kypta RM Mol Cancer; 2010 Mar; 9():55. PubMed ID: 20219091 [TBL] [Abstract][Full Text] [Related]
3. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. Chang PC; Wang TY; Chang YT; Chu CY; Lee CL; Hsu HW; Zhou TA; Wu Z; Kim RH; Desai SJ; Liu S; Kung HJ PLoS One; 2014; 9(2):e88556. PubMed ID: 24551118 [TBL] [Abstract][Full Text] [Related]
4. Phthalates deregulate cell proliferation, but not neuroendocrine transdifferentiation, in human LNCaP prostate cancer cell model. Hrubá E; Pernicová Z; Pálková L; Souček K; Vondráček J; Machala M Folia Biol (Praha); 2014; 60 Suppl 1():56-61. PubMed ID: 25369342 [TBL] [Abstract][Full Text] [Related]
5. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6-IL6 Loop. Lee GT; Kwon SJ; Lee JH; Jeon SS; Jang KT; Choi HY; Lee HM; Kim WJ; Lee DH; Kim IY Prostate; 2011 Oct; 71(14):1525-37. PubMed ID: 21374653 [TBL] [Abstract][Full Text] [Related]
6. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Moritz T; Venz S; Junker H; Kreuz S; Walther R; Zimmermann U Tumour Biol; 2016 Aug; 37(8):10435-46. PubMed ID: 26846108 [TBL] [Abstract][Full Text] [Related]
7. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Kokontis JM; Hay N; Liao S Mol Endocrinol; 1998 Jul; 12(7):941-53. PubMed ID: 9658399 [TBL] [Abstract][Full Text] [Related]
8. Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/β-catenin signaling in prostate cancer cells. Ciarlo M; Benelli R; Barbieri O; Minghelli S; Barboro P; Balbi C; Ferrari N Int J Cancer; 2012 Aug; 131(3):582-90. PubMed ID: 22015967 [TBL] [Abstract][Full Text] [Related]
9. hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen. Fraser JA; Sutton JE; Tazayoni S; Bruce I; Poole AV Sci Rep; 2019 Dec; 9(1):19076. PubMed ID: 31836808 [TBL] [Abstract][Full Text] [Related]
10. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Choi HE; Shin JS; Leem DG; Kim SD; Cho WJ; Lee KT Chem Biol Interact; 2016 Dec; 260():196-207. PubMed ID: 27720946 [TBL] [Abstract][Full Text] [Related]
12. Androgen-responsive and -unresponsive prostate cancer cell lines respond differently to stimuli inducing neuroendocrine differentiation. Marchiani S; Tamburrino L; Nesi G; Paglierani M; Gelmini S; Orlando C; Maggi M; Forti G; Baldi E Int J Androl; 2010 Dec; 33(6):784-93. PubMed ID: 20088946 [TBL] [Abstract][Full Text] [Related]
13. Elevated circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) levels are associated with neuroendocrine differentiation in castration resistant prostate cancer. Gong Y; Chippada-Venkata UD; Galsky MD; Huang J; Oh WK Prostate; 2015 May; 75(6):616-27. PubMed ID: 25560638 [TBL] [Abstract][Full Text] [Related]
14. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. Kim YC; Chen C; Bolton EC PLoS One; 2015; 10(9):e0138286. PubMed ID: 26372468 [TBL] [Abstract][Full Text] [Related]
15. Androgen receptor regulation of G1 cyclin and cyclin-dependent kinase function in the CWR22 human prostate cancer xenograft. Gregory CW; Johnson RT; Presnell SC; Mohler JL; French FS J Androl; 2001; 22(4):537-48. PubMed ID: 11451350 [TBL] [Abstract][Full Text] [Related]
16. Expression of neuroendocrine differentiation markers in lethal metastatic castration-resistant prostate cancer. Sainio M; Visakorpi T; Tolonen T; Ilvesaro J; Bova GS Pathol Res Pract; 2018 Jun; 214(6):848-856. PubMed ID: 29728311 [TBL] [Abstract][Full Text] [Related]
17. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. Kang J; Sergio CM; Sutherland RL; Musgrove EA BMC Cancer; 2014 Jan; 14():32. PubMed ID: 24444383 [TBL] [Abstract][Full Text] [Related]
19. Reprogramming landscape highlighted by dynamic transcriptomes in therapy-induced neuroendocrine differentiation. Asberry AM; Liu S; Nam HS; Deng X; Wan J; Hu CD Comput Struct Biotechnol J; 2022; 20():5873-5885. PubMed ID: 36382181 [TBL] [Abstract][Full Text] [Related]
20. Protein kinase A (PKA) pathway is functionally linked to androgen receptor (AR) in the progression of prostate cancer. Sarwar M; Sandberg S; Abrahamsson PA; Persson JL Urol Oncol; 2014 Jan; 32(1):25.e1-12. PubMed ID: 23410945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]