BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24884804)

  • 21. Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer.
    Zhu S; Tian H; Niu X; Wang J; Li X; Jiang N; Wen S; Chen X; Ren S; Xu C; Chang C; Flores-Morales A; Shang Z; Sun Y; Niu Y
    Oncogene; 2019 Jun; 38(24):4875-4884. PubMed ID: 30770901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor.
    Merkle D; Hoffmann R
    Cell Signal; 2011 Mar; 23(3):507-15. PubMed ID: 20813184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells → androgen receptor (AR) → miRNA32 signals.
    Dang Q; Li L; Xie H; He D; Chen J; Song W; Chang LS; Chang HC; Yeh S; Chang C
    Mol Oncol; 2015 Aug; 9(7):1241-51. PubMed ID: 25817444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibiting geranylgeranyl diphosphate synthesis reduces nuclear androgen receptor signaling and neuroendocrine differentiation in prostate cancer cell models.
    Weissenrieder JS; Reilly JE; Neighbors JD; Hohl RJ
    Prostate; 2019 Jan; 79(1):21-30. PubMed ID: 30106164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells.
    Yuan TC; Veeramani S; Lin MF
    Endocr Relat Cancer; 2007 Sep; 14(3):531-47. PubMed ID: 17914087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blocking the Feedback Loop between Neuroendocrine Differentiation and Macrophages Improves the Therapeutic Effects of Enzalutamide (MDV3100) on Prostate Cancer.
    Wang C; Peng G; Huang H; Liu F; Kong DP; Dong KQ; Dai LH; Zhou Z; Wang KJ; Yang J; Cheng YQ; Gao X; Qu M; Wang HR; Zhu F; Tian QQ; Liu D; Cao L; Cui XG; Xu CL; Xu DF; Sun YH
    Clin Cancer Res; 2018 Feb; 24(3):708-723. PubMed ID: 29191973
    [No Abstract]   [Full Text] [Related]  

  • 27. Differential requirements for ras and the retinoblastoma tumor suppressor protein in the androgen dependence of prostatic adenocarcinoma cells.
    Fribourg AF; Knudsen KE; Strobeck MW; Lindhorst CM; Knudsen ES
    Cell Growth Differ; 2000 Jul; 11(7):361-72. PubMed ID: 10939590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reprogramming landscape highlighted by dynamic transcriptomes in therapy-induced neuroendocrine differentiation.
    Asberry AM; Liu S; Nam HS; Deng X; Wan J; Hu CD
    Comput Struct Biotechnol J; 2022; 20():5873-5885. PubMed ID: 36382181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous targeting of androgen receptor (AR) and MAPK-interacting kinases (MNKs) by novel retinamides inhibits growth of human prostate cancer cell lines.
    Ramamurthy VP; Ramalingam S; Gediya L; Kwegyir-Afful AK; Njar VC
    Oncotarget; 2015 Feb; 6(5):3195-210. PubMed ID: 25605250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Checkpoint Kinase 2 Negatively Regulates Androgen Sensitivity and Prostate Cancer Cell Growth.
    Ta HQ; Ivey ML; Frierson HF; Conaway MR; Dziegielewski J; Larner JM; Gioeli D
    Cancer Res; 2015 Dec; 75(23):5093-105. PubMed ID: 26573794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Androgen stimulated cellular proliferation in the human prostate cancer cell line LNCaP is associated with reduced retinoblastoma protein expression.
    Taneja SS; Ha S; Garabedian MJ
    J Cell Biochem; 2001; 84(1):188-99. PubMed ID: 11746527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer.
    Takayama K; Horie-Inoue K; Suzuki T; Urano T; Ikeda K; Fujimura T; Takahashi S; Homma Y; Ouchi Y; Inoue S
    Mol Endocrinol; 2012 May; 26(5):748-61. PubMed ID: 22456197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1.
    Chen S; Xu Y; Yuan X; Bubley GJ; Balk SP
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15969-74. PubMed ID: 17043241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient exposure to androgens induces a remarkable self-sustained quiescent state in dispersed prostate cancer cells.
    Bui AT; Huang ME; Havard M; Laurent-Tchenio F; Dautry F; Tchenio T
    Cell Cycle; 2017 May; 16(9):879-893. PubMed ID: 28426320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation.
    Merkens L; Sailer V; Lessel D; Janzen E; Greimeier S; Kirfel J; Perner S; Pantel K; Werner S; von Amsberg G
    J Exp Clin Cancer Res; 2022 Feb; 41(1):46. PubMed ID: 35109899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer.
    Chuu CP; Kokontis JM; Hiipakka RA; Fukuchi J; Lin HP; Lin CY; Huo C; Su LC
    J Biomed Sci; 2011 Aug; 18(1):63. PubMed ID: 21859492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells.
    Danza G; Di Serio C; Rosati F; Lonetto G; Sturli N; Kacer D; Pennella A; Ventimiglia G; Barucci R; Piscazzi A; Prudovsky I; Landriscina M; Marchionni N; Tarantini F
    Mol Cancer Res; 2012 Feb; 10(2):230-8. PubMed ID: 22172337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical role for p27Kip1 in cell cycle arrest after androgen depletion in mouse mammary carcinoma cells (SC-3).
    Menjo M; Kaneko Y; Ogata E; Ikeda K; Nakanishi M
    Oncogene; 1998 Nov; 17(20):2619-27. PubMed ID: 9840925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes.
    Lu S; Tsai SY; Tsai MJ
    Cancer Res; 1997 Oct; 57(20):4511-6. PubMed ID: 9377562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.