BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24885075)

  • 1. Complete steady-state rate equation for DNA ligase and its use for measuring product kinetic parameters of NAD⁺-dependent DNA ligase from Haemophilus influenzae.
    Shapiro AB
    BMC Res Notes; 2014 May; 7():287. PubMed ID: 24885075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput fluorescence resonance energy transfer-based assay for DNA ligase.
    Shapiro AB; Eakin AE; Walkup GK; Rivin O
    J Biomol Screen; 2011 Jun; 16(5):486-93. PubMed ID: 21398623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.
    Kemmer G; Reilly TJ; Schmidt-Brauns J; Zlotnik GW; Green BA; Fiske MJ; Herbert M; Kraiss A; Schlör S; Smith A; Reidl J
    J Bacteriol; 2001 Jul; 183(13):3974-81. PubMed ID: 11395461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Time Scale Analysis of T4 DNA Ligase-DNA Binding.
    Bauer RJ; Jurkiw TJ; Evans TC; Lohman GJ
    Biochemistry; 2017 Feb; 56(8):1117-1129. PubMed ID: 28165732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a fluorescence resonance energy transfer assay for measuring the activity of Streptococcus pneumoniae DNA ligase, an enzyme essential for DNA replication, repair, and recombination.
    Chen XC; Hentz NG; Hubbard F; Meier TI; Sittampalam S; Zhao G
    Anal Biochem; 2002 Oct; 309(2):232-40. PubMed ID: 12413456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure guided understanding of NAD+ recognition in bacterial DNA ligases.
    Lahiri SD; Gu RF; Gao N; Karantzeni I; Walkup GK; Mills SD
    ACS Chem Biol; 2012 Mar; 7(3):571-80. PubMed ID: 22230472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput assay for the adenylation reaction of bacterial DNA ligase.
    Miesel L; Kravec C; Xin AT; McMonagle P; Ma S; Pichardo J; Feld B; Barrabee E; Palermo R
    Anal Biochem; 2007 Jul; 366(1):9-17. PubMed ID: 17493575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of NAD kinase and NMN:ATP adenylyltransferase in Haemophilus influenzae.
    Denicola-Seoane A; Anderson BM
    J Gen Microbiol; 1990 Mar; 136(3):425-30. PubMed ID: 2167921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium.
    Cheng W; Roth J
    J Bacteriol; 1995 Dec; 177(23):6711-7. PubMed ID: 7592458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene.
    Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA
    Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD
    Shukla A; Afsar M; Kumar N; Kumar S; Ramachandran R
    J Struct Biol; 2021 Mar; 213(1):107655. PubMed ID: 33197566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies on the reaction catalyzed by DNA ligase from calf thymus.
    Teraoka H; Sawai M; Tsukada K
    Biochim Biophys Acta; 1983 Sep; 747(1-2):117-22. PubMed ID: 6882774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae.
    Cheng C; Shuman S
    Nucleic Acids Res; 1997 Apr; 25(7):1369-74. PubMed ID: 9060431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state kinetics of malonyl-CoA synthetase from Bradyrhizobium japonicum and evidence for malonyl-AMP formation in the reaction.
    Kim YS; Kang SW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):327-33. PubMed ID: 8297339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates.
    Andersen C; Maier E; Kemmer G; Blass J; Hilpert AK; Benz R; Reidl J
    J Biol Chem; 2003 Jul; 278(27):24269-76. PubMed ID: 12695515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and thermodynamics of nick sealing by T4 DNA ligase.
    Cherepanov AV; de Vries S
    Eur J Biochem; 2003 Nov; 270(21):4315-25. PubMed ID: 14622296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism and activation for allosteric adenosine 5'-monophosphate nucleosidase. Kinetic alpha-deuterium isotope effects for the enzyme-catalyzed hydrolysis of adenosine 5'-monophosphate and nicotinamide mononucleotide.
    Skoog MT
    J Biol Chem; 1986 Apr; 261(10):4451-9. PubMed ID: 3485632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal.
    Gajiwala KS; Pinko C
    Structure; 2004 Aug; 12(8):1449-59. PubMed ID: 15296738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deoxyribonucleic acid ligase. A steady state kinetic analysis of the reaction catalyzed by the enzyme from Escherichia coli.
    Modorich P; Lehman IR
    J Biol Chem; 1973 Nov; 248(21):7502-11. PubMed ID: 4355585
    [No Abstract]   [Full Text] [Related]  

  • 20. The high-resolution crystal structure of periplasmic Haemophilus influenzae NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism.
    Garavaglia S; Bruzzone S; Cassani C; Canella L; Allegrone G; Sturla L; Mannino E; Millo E; De Flora A; Rizzi M
    Biochem J; 2012 Jan; 441(1):131-41. PubMed ID: 21933152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.