These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24885400)

  • 1. Iron(III) sulfate as terminal oxidant in the synthesis of methyl ketones via Wacker oxidation.
    Fernandes RA; Chaudhari DA
    J Org Chem; 2014 Jun; 79(12):5787-93. PubMed ID: 24885400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypervalent Iodine as a Terminal Oxidant in Wacker-Type Oxidation of Terminal Olefins to Methyl Ketones.
    Chaudhari DA; Fernandes RA
    J Org Chem; 2016 Mar; 81(5):2113-21. PubMed ID: 26845633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-promoted C-C bond cleavage of 1,3-diketones: a route to 1,2-diketones under mild reaction conditions.
    Huang L; Cheng K; Yao B; Xie Y; Zhang Y
    J Org Chem; 2011 Jul; 76(14):5732-7. PubMed ID: 21627329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MnO
    Fernandes RA; Ramakrishna GV; Bethi V
    Org Biomol Chem; 2020 Aug; 18(31):6115-6125. PubMed ID: 32725041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant.
    Puls F; Knölker HJ
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1222-1226. PubMed ID: 29206335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green and Efficient: Iron-Catalyzed Selective Oxidation of Olefins to Carbonyls with O2.
    Gonzalez-de-Castro A; Xiao J
    J Am Chem Soc; 2015 Jul; 137(25):8206-18. PubMed ID: 26027938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand.
    Wang YF; Gao YR; Mao S; Zhang YL; Guo DD; Yan ZL; Guo SH; Wang YQ
    Org Lett; 2014 Mar; 16(6):1610-3. PubMed ID: 24606159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands*.
    Puls F; Linke P; Kataeva O; Knölker HJ
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):14083-14090. PubMed ID: 33856090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional palladium catalysis. 2. Tandem haloallylation followed by Wacker-Tsuji oxidation or sonogashira cross-coupling.
    Thadani AN; Rawal VH
    Org Lett; 2002 Nov; 4(24):4321-3. PubMed ID: 12443088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general and efficient catalyst system for a Wacker-type oxidation using TBHP as the terminal oxidant: application to classically challenging substrates.
    Michel BW; Camelio AM; Cornell CN; Sigman MS
    J Am Chem Soc; 2009 May; 131(17):6076-7. PubMed ID: 19364100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic nano-Fe3O4-supported 1-benzyl-1,4-dihydronicotinamide (BNAH): synthesis and application in the catalytic reduction of α,β-epoxy ketones.
    Xu HJ; Wan X; Shen YY; Xu S; Feng YS
    Org Lett; 2012 Mar; 14(5):1210-3. PubMed ID: 22324403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of aryl(di)azinyl ketones through copper- and iron-catalyzed oxidation of the methylene group of aryl(di)azinylmethanes.
    De Houwer J; Abbaspour Tehrani K; Maes BU
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2745-8. PubMed ID: 22290611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant.
    Cornell CN; Sigman MS
    Inorg Chem; 2007 Mar; 46(6):1903-9. PubMed ID: 17348721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium-catalyzed aerobic oxidative cyclization of N-aryl imines: indole synthesis from anilines and ketones.
    Wei Y; Deb I; Yoshikai N
    J Am Chem Soc; 2012 Jun; 134(22):9098-101. PubMed ID: 22612535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.
    Liu M; Qiu X; Miyauchi M; Hashimoto K
    J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirhodium(II) caprolactamate: an exceptional catalyst for allylic oxidation.
    Catino AJ; Forslund RE; Doyle MP
    J Am Chem Soc; 2004 Oct; 126(42):13622-3. PubMed ID: 15493912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective Wacker-Type Oxidation of Internal Olefins in
    Huang Q; Li YW; Ning XS; Jiang GQ; Zhang XW; Qu JP; Kang YB
    Org Lett; 2020 Feb; 22(3):965-969. PubMed ID: 31971810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wacker-Type Oxidation Using an Iron Catalyst and Ambient Air: Application to Late-Stage Oxidation of Complex Molecules.
    Liu B; Jin F; Wang T; Yuan X; Han W
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12712-12717. PubMed ID: 28815838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient and expedient synthesis of 5-hydroxy-1H-pyrrol-2-(5H)-ones from FeCl3-catalyzed tandem intramolecular enaminic addition of tertiary enamides to ketones and 1,3-hydroxy rearrangement.
    Yang L; Lei CH; Wang DX; Huang ZT; Wang MX
    Org Lett; 2010 Sep; 12(17):3918-21. PubMed ID: 20698503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes.
    Franke A; Fertinger C; van Eldik R
    Chemistry; 2012 May; 18(22):6935-49. PubMed ID: 22532376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.