These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24885459)

  • 1. Functionalization of graphene grown on metal substrate with atomic oxygen: enolate vs epoxide.
    Jung J; Lim H; Oh J; Kim Y
    J Am Chem Soc; 2014 Jun; 136(24):8528-31. PubMed ID: 24885459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth.
    Dong J; Zhang L; Zhang K; Ding F
    Nanoscale; 2018 Apr; 10(15):6878-6883. PubMed ID: 29633768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Supported Graphene Oxide: Evidence for Enolate Species.
    Novotny Z; Nguyen MT; Netzer FP; Glezakou VA; Rousseau R; Dohnálek Z
    J Am Chem Soc; 2018 Apr; 140(15):5102-5109. PubMed ID: 29401394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen.
    Johns JE; Alaboson JM; Patwardhan S; Ryder CR; Schatz GC; Hersam MC
    J Am Chem Soc; 2013 Dec; 135(48):18121-5. PubMed ID: 24206242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen switching of the epitaxial graphene-metal interaction.
    Larciprete R; Ulstrup S; Lacovig P; Dalmiglio M; Bianchi M; Mazzola F; Hornekær L; Orlando F; Baraldi A; Hofmann P; Lizzit S
    ACS Nano; 2012 Nov; 6(11):9551-8. PubMed ID: 23051045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned formation of enolate functional groups on the graphene basal plane.
    Cassidy A; Pedersen S; Bluhm H; Calisti V; Angot T; Salomon E; Bisson R; Hornekær L
    Phys Chem Chem Phys; 2018 Nov; 20(45):28370-28374. PubMed ID: 30412217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-induced enhancement of the chemical reactivity in metal-supported graphene.
    Romero-Muñiz C; Martín-Recio A; Pou P; Gómez-Rodríguez JM; Pérez R
    Phys Chem Chem Phys; 2018 Jul; 20(29):19492-19499. PubMed ID: 29998270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles.
    Wang B; Bocquet ML
    Nanoscale; 2012 Aug; 4(15):4687-93. PubMed ID: 22735164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene.
    Hossain MZ; Johns JE; Bevan KH; Karmel HJ; Liang YT; Yoshimoto S; Mukai K; Koitaya T; Yoshinobu J; Kawai M; Lear AM; Kesmodel LL; Tait SL; Hersam MC
    Nat Chem; 2012 Feb; 4(4):305-9. PubMed ID: 22437716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular self-assembly on graphene.
    MacLeod JM; Rosei F
    Small; 2014 Mar; 10(6):1038-49. PubMed ID: 24155272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.
    Lazar P; Zhang S; Safářová K; Li Q; Froning JP; Granatier J; Hobza P; Zbořil R; Besenbacher F; Dong M; Otyepka M
    ACS Nano; 2013 Feb; 7(2):1646-51. PubMed ID: 23346897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Si-doped graphene activate or dissociate O2 molecule?
    Chen Y; Yang XC; Liu YJ; Zhao JX; Cai QH; Wang XZ
    J Mol Graph Model; 2013 Feb; 39():126-32. PubMed ID: 23261882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst.
    Hwang J; Kim M; Campbell D; Alsalman HA; Kwak JY; Shivaraman S; Woll AR; Singh AK; Hennig RG; Gorantla S; Rümmeli MH; Spencer MG
    ACS Nano; 2013 Jan; 7(1):385-95. PubMed ID: 23244231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-induced hybridization between graphene and titanium.
    Hsu AL; Koch RJ; Ong MT; Fang W; Hofmann M; Kim KK; Seyller T; Dresselhaus MS; Reed EJ; Kong J; Palacios T
    ACS Nano; 2014 Aug; 8(8):7704-13. PubMed ID: 25032479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of graphene for efficient energy conversion and storage.
    Dai L
    Acc Chem Res; 2013 Jan; 46(1):31-42. PubMed ID: 23030244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physics of epitaxial graphene on SiC(0001).
    Kageshima H; Hibino H; Tanabe S
    J Phys Condens Matter; 2012 Aug; 24(31):314215. PubMed ID: 22820985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene.
    Wang B; Caffio M; Bromley C; Früchtl H; Schaub R
    ACS Nano; 2010 Oct; 4(10):5773-82. PubMed ID: 20886811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface structure and mechanics between graphene and metal substrates: a first-principles study.
    Xu Z; Buehler MJ
    J Phys Condens Matter; 2010 Dec; 22(48):485301. PubMed ID: 21406741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.