BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24885569)

  • 1. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses.
    Park SW; Kwon MJ; Yoo JY; Choi HJ; Ahn YJ
    BMC Complement Altern Med; 2014 May; 14():171. PubMed ID: 24885569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses.
    Ngan LT; Jang MJ; Kwon MJ; Ahn YJ
    PLoS One; 2015; 10(4):e0121629. PubMed ID: 25860871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-human rhinovirus 2 activity and mode of action of quercetin-7-glucoside from Lagerstroemia speciosa.
    Song JH; Park KS; Kwon DH; Choi HJ
    J Med Food; 2013 Apr; 16(4):274-9. PubMed ID: 23566054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effects of orobol 7-O-D-glucoside from banaba (Lagerstroemia speciosa L.) on human rhinoviruses replication.
    Choi HJ; Bae EY; Song JH; Baek SH; Kwon DH
    Lett Appl Microbiol; 2010 Jul; 51(1):1-5. PubMed ID: 20497313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity.
    Choi HJ; Song JH; Bhatt LR; Baek SH
    Phytother Res; 2010 Sep; 24(9):1292-6. PubMed ID: 20104501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-human rhinovirus activity of raoulic acid from Raoulia australis.
    Choi HJ; Song JH; Lim CH; Baek SH; Kwon DH
    J Med Food; 2010 Apr; 13(2):326-8. PubMed ID: 20412019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity.
    ; Modi M; Goel T; Das T; Malik S; Suri S; Rawat AK; Srivastava SK; Tuli R; Malhotra S; Gupta SK
    Indian J Med Res; 2013 Mar; 137(3):540-8. PubMed ID: 23640562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anti-diabetic effect of eight Lagerstroemia speciosa leaf extracts based on the contents of ellagitannins and ellagic acid derivatives.
    Guo S; Ren X; He K; Chen X; Zhang S; Roller M; Zheng B; Zheng Q; Ho CT; Bai N
    Food Funct; 2020 Feb; 11(2):1560-1571. PubMed ID: 32003379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative in vitro analysis of inhibition of rhinovirus and influenza virus replication by mucoactive secretolytic agents and plant extracts.
    Walther C; Döring K; Schmidtke M
    BMC Complement Med Ther; 2020 Dec; 20(1):380. PubMed ID: 33357221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iota-Carrageenan is a potent inhibitor of rhinovirus infection.
    Grassauer A; Weinmuellner R; Meier C; Pretsch A; Prieschl-Grassauer E; Unger H
    Virol J; 2008 Sep; 5():107. PubMed ID: 18817582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.) Pers.
    Unno T; Sugimoto A; Kakuda T
    J Ethnopharmacol; 2004 Aug; 93(2-3):391-5. PubMed ID: 15234783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhinovirus chemotherapy.
    Patick AK
    Antiviral Res; 2006 Sep; 71(2-3):391-6. PubMed ID: 16675037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells.
    Bai N; He K; Roller M; Zheng B; Chen X; Shao Z; Peng T; Zheng Q
    J Agric Food Chem; 2008 Dec; 56(24):11668-74. PubMed ID: 19053366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Series of Highly Potent Small Molecule Inhibitors of Rhinovirus Replication.
    Kim J; Jung YK; Kim C; Shin JS; Scheers E; Lee JY; Han SB; Lee CK; Neyts J; Ha JD; Jung YS
    J Med Chem; 2017 Jul; 60(13):5472-5492. PubMed ID: 28581749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high-throughput human rhinovirus infectivity cell-based assay for identifying antiviral compounds.
    Phillips T; Jenkinson L; McCrae C; Thong B; Unitt J
    J Virol Methods; 2011 May; 173(2):182-8. PubMed ID: 21300110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exogenous interferons on rhinovirus replication and airway inflammatory responses.
    Becker TM; Durrani SR; Bochkov YA; Devries MK; Rajamanickam V; Jackson DJ
    Ann Allergy Asthma Immunol; 2013 Nov; 111(5):397-401. PubMed ID: 24125148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds.
    Ledford RM; Patel NR; Demenczuk TM; Watanyar A; Herbertz T; Collett MS; Pevear DC
    J Virol; 2004 Apr; 78(7):3663-74. PubMed ID: 15016887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C.
    Mello C; Aguayo E; Rodriguez M; Lee G; Jordan R; Cihlar T; Birkus G
    Antimicrob Agents Chemother; 2014; 58(3):1546-55. PubMed ID: 24366736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo.
    Spickler C; Lippens J; Laberge MK; Desmeules S; Bellavance É; Garneau M; Guo T; Hucke O; Leyssen P; Neyts J; Vaillancourt FH; Décor A; O'Meara J; Franti M; Gauthier A
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3358-68. PubMed ID: 23650168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and anti-rhinovirus activity of novel 3-[2-(pyridinyl)vinyl]substituted -2H-chromenes and -4H-chromen-4-ones.
    Conti C; Proietti Monaco L; Desideri N
    Bioorg Med Chem; 2014 Feb; 22(3):1201-7. PubMed ID: 24360829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.