These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24885772)

  • 1. Substituent effects on rates and torquoselectivities of electrocyclic ring-openings of N-substituted 2-azetines.
    Lopez SA; Houk KN
    J Org Chem; 2014 Jul; 79(13):6189-95. PubMed ID: 24885772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent effects in eight-electron electrocyclic reactions.
    Lecea B; Arrieta A; Cossío FP
    J Org Chem; 2005 Feb; 70(3):1035-41. PubMed ID: 15675865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origins of inward torquoselectivity by silyl groups and other sigma-acceptors in electrocyclic reactions of cyclobutenes.
    Lee PS; Zhang X; Houk KN
    J Am Chem Soc; 2003 Apr; 125(17):5072-9. PubMed ID: 12708857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mono-, Di-, and Trifluoroalkyl Substituent Effects on the Torquoselectivities of Cyclobutene and Oxetene Electrocyclic Ring Openings.
    Honda K; Lopez SA; Houk KN; Mikami K
    J Org Chem; 2015 Dec; 80(23):11768-72. PubMed ID: 26301819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and computational study of the conrotatory ring opening of various 3-chloro-2-azetines.
    Mangelinckx S; Van Speybroeck V; Vansteenkiste P; Waroquier M; De Kimpe N
    J Org Chem; 2008 Jul; 73(14):5481-8. PubMed ID: 18549273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituent Effects on Rates and Stereoselectivities of Conrotatory Electrocyclic Reactions of Cyclobutenes. A Theoretical Study.
    Niwayama S; Kallel EA; Spellmeyer DC; Sheu C; Houk KN
    J Org Chem; 1996 Apr; 61(8):2813-2825. PubMed ID: 11667117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conrotatory ring-opening reactions of cyclopropyl anions in monocyclic and tricyclic systems.
    Faza ON; López CS; Alvarez R; de Lera AR
    Org Lett; 2004 Mar; 6(6):901-4. PubMed ID: 15012060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predominance of the participation of the geminal over vicinal bonds: torquoselectivity of retro-Nazarov reactions.
    Naruse Y; Ichihashi Y; Shimizu T; Inagaki S
    Org Lett; 2012 Jul; 14(14):3728-31. PubMed ID: 22769432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational investigation towards substitution effects on 8π electrocyclisation of conjugated 1,3,5,7-octatetraenes.
    Arfan NHBZ; Hamid MHSA; Sheikh NS
    RSC Adv; 2023 Oct; 13(44):30787-30797. PubMed ID: 37869396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical study of cyclohexyne addition to carbonyl-Cα bonds: allowed and forbidden electrocyclic and nonpericyclic ring-openings of strained cyclobutenes.
    Sader CA; Houk KN
    J Org Chem; 2012 Jun; 77(11):4939-48. PubMed ID: 22537557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An orbital phase theory for the torquoselectivity of the ring-opening reactions of 3-substituted cyclobutenes: geminal bond participation.
    Yasui M; Naruse Y; Inagaki S
    J Org Chem; 2004 Oct; 69(21):7246-9. PubMed ID: 15471476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual pi-donating effects of pi-accepting substituents on the stabilities of benzylic cations: a theoretical study.
    Kim CK; Han IS; Ryu WS; Lee HW; Lee BS; Kim CK
    J Phys Chem A; 2006 Feb; 110(7):2500-4. PubMed ID: 16480310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing torquoselectivity in electrocyclic ring opening reactions of trans-3,4-dimethylcyclobutene and 3-formylcyclobutene through electronic structure principles.
    Morales-Bayuelo A; Pan S; Caballero J; Chattaraj PK
    Phys Chem Chem Phys; 2015 Sep; 17(35):23104-11. PubMed ID: 26278203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituent effects on the ring opening of 2-aziridinylmethyl radicals.
    Wang YM; Fu Y; Liu L; Guo QX
    J Org Chem; 2005 Apr; 70(9):3633-40. PubMed ID: 15845000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results.
    Neuvonen H; Neuvonen K; Fülöp F
    J Org Chem; 2006 Apr; 71(8):3141-8. PubMed ID: 16599611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-Learning Photodynamics Simulations Uncover the Role of Substituent Effects on the Photochemical Formation of Cubanes.
    Li J; Stein R; Adrion DM; Lopez SA
    J Am Chem Soc; 2021 Dec; 143(48):20166-20175. PubMed ID: 34787403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent effect of group 14 elements on the ring-opening reaction of cyclobutene.
    Hasegawa M; Usui I; Konno S; Murakami M
    Org Biomol Chem; 2010 Sep; 8(18):4169-75. PubMed ID: 20664887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction Mechanism of the Hydrogermylation/Hydrostannylation of Unactivated Alkenes with Two-Coordinate E(II) Hydrides (E=Ge, Sn): A Theoretical Study.
    Zhao L; Hermann M; Jones C; Frenking G
    Chemistry; 2016 Aug; 22(33):11728-35. PubMed ID: 27403941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio molecular orbital and density functional studies on the ring-opening reaction of oxetene.
    Jayaprakash S; Jeevanandam J; Subramani K
    J Mol Model; 2014 Nov; 20(11):2494. PubMed ID: 25367041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing thermal electrocyclic ring-closure reactions of (2Z)-hexa-2,4,5-trienals and their Schiff bases. Structural, kinetic, and computational studies.
    Souto JA; Pérez M; Silva López C; Alvarez R; Torrado A; de Lera AR
    J Org Chem; 2010 Jul; 75(13):4453-62. PubMed ID: 20521841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.