These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24885849)
1. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out. Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M Microb Cell Fact; 2014 May; 13():70. PubMed ID: 24885849 [TBL] [Abstract][Full Text] [Related]
2. High yield 1,3-propanediol production by rational engineering of the 3-hydroxypropionaldehyde bottleneck in Citrobacter werkmanii. Maervoet VE; De Maeseneire SL; Avci FG; Beauprez J; Soetaert WK; De Mey M Microb Cell Fact; 2016 Jan; 15():23. PubMed ID: 26822953 [TBL] [Abstract][Full Text] [Related]
3. Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters. Maervoet VE; De Maeseneire SL; Soetaert WK; De Mey M Bioprocess Biosyst Eng; 2014 Apr; 37(4):711-8. PubMed ID: 23996279 [TBL] [Abstract][Full Text] [Related]
4. Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Ainala SK; Ashok S; Ko Y; Park S Appl Microbiol Biotechnol; 2013 Jun; 97(11):5001-11. PubMed ID: 23377788 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae. Horng YT; Chang KC; Chou TC; Yu CJ; Chien CC; Wei YH; Soo PC J Ind Microbiol Biotechnol; 2010 Jul; 37(7):707-16. PubMed ID: 20379761 [TBL] [Abstract][Full Text] [Related]
6. 1,3-Propanediol production by Escherichia coli using genes from Citrobacter freundii atcc 8090. Przystałowska H; Zeyland J; Kośmider A; Szalata M; Słomski R; Lipiński D Acta Biochim Pol; 2015; 62(3):589-97. PubMed ID: 26345096 [TBL] [Abstract][Full Text] [Related]
7. Development of recombinant Klebsiella pneumoniae ∆dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Ashok S; Raj SM; Rathnasingh C; Park S Appl Microbiol Biotechnol; 2011 May; 90(4):1253-65. PubMed ID: 21336929 [TBL] [Abstract][Full Text] [Related]
8. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum. Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556 [TBL] [Abstract][Full Text] [Related]
9. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Wischral D; Zhang J; Cheng C; Lin M; De Souza LMG; Pessoa FLP; Pereira N; Yang ST Bioresour Technol; 2016 Jul; 212():100-110. PubMed ID: 27085150 [TBL] [Abstract][Full Text] [Related]
10. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Przystałowska H; Zeyland J; Szymanowska-Powałowska D; Szalata M; Słomski R; Lipiński D Microbiol Res; 2015 Feb; 171():1-7. PubMed ID: 25644946 [TBL] [Abstract][Full Text] [Related]
11. Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. Lu XY; Ren SL; Lu JZ; Zong H; Song J; Zhuge B J Appl Microbiol; 2018 Mar; 124(3):682-690. PubMed ID: 29297957 [TBL] [Abstract][Full Text] [Related]
12. [Progress in metabolism and crucial enzymes of glycerol conversion to 1,3-propanediol]. Tian PF; Tan TW Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):201-5. PubMed ID: 17460888 [TBL] [Abstract][Full Text] [Related]
13. Taxonomic diversity of anaerobic glycerol dissimilation in the Enterobacteriaceae. Bouvet OM; Lenormand P; Ageron E; Grimont PA Res Microbiol; 1995 May; 146(4):279-90. PubMed ID: 7569322 [TBL] [Abstract][Full Text] [Related]
14. Exploring Dual-Substrate Cultivation Strategy of 1,3-Propanediol Production Using Klebsiella pneumoniae. Chen WC; Chuang CJ; Chang JS; Wang LF; Soo PC; Wu HS; Tsai SL; Wei YH Appl Biochem Biotechnol; 2020 May; 191(1):346-359. PubMed ID: 31863348 [TBL] [Abstract][Full Text] [Related]
15. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Oh BR; Lee SM; Heo SY; Seo JW; Kim CH Microb Cell Fact; 2018 Jun; 17(1):92. PubMed ID: 29907119 [TBL] [Abstract][Full Text] [Related]
16. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Hirokawa Y; Maki Y; Hanai T Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670 [TBL] [Abstract][Full Text] [Related]
17. [Kinetic mechanisms of glycerol dehydrogenase and 1,3-propanediol oxidoreductase from Klebsiella pneumoniae]. Chen H; Nie J; Chen G; Fang B Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):177-82. PubMed ID: 20432935 [TBL] [Abstract][Full Text] [Related]
18. Adaptability of Klebsiella pneumoniae 2e, a Newly Isolated 1,3-Propanediol-Producing Strain, to Crude Glycerol as Revealed by Genomic Profiling. Ma J; Jiang H; Hector SB; Xiao Z; Li J; Liu R; Li C; Zeng B; Liu GQ; Zhu Y Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30902851 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Klebsiella pneumoniae J2B for the production of 1,3-propanediol from glucose. Lama S; Seol E; Park S Bioresour Technol; 2017 Dec; 245(Pt B):1542-1550. PubMed ID: 28549809 [TBL] [Abstract][Full Text] [Related]
20. Cofactor recycling for co-production of 1,3-propanediol and glutamate by metabolically engineered Corynebacterium glutamicum. Huang J; Wu Y; Wu W; Zhang Y; Liu D; Chen Z Sci Rep; 2017 Feb; 7():42246. PubMed ID: 28176878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]