These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24885944)

  • 21. Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study.
    Basu A; Karmakar P; Karmakar S
    J Membr Biol; 2020 Jun; 253(3):205-219. PubMed ID: 32279087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-lipid dynamics in phase-separated supported lipid bilayers.
    Woodward X; Kelly CV
    Chem Phys Lipids; 2020 Nov; 233():104991. PubMed ID: 33121937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous and anomalous diffusion inside lipid tubules.
    Guo L; Chowdhury P; Fang J; Gai F
    J Phys Chem B; 2007 Dec; 111(51):14244-9. PubMed ID: 18052149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of mica supported lipid bilayers for high resolution optical microscopy imaging.
    Matysik A; Kraut RS
    J Vis Exp; 2014 Jun; (88):. PubMed ID: 24961277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TRAIT2D: a Software for Quantitative Analysis of Single Particle Diffusion Data.
    Reina F; Wigg JMA; Dmitrieva M; Vogler B; Lefebvre J; Rittscher J; Eggeling C
    F1000Res; 2021; 10():838. PubMed ID: 35186271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers.
    Maekawa T; Chin H; Nyu T; Sut TN; Ferhan AR; Hayashi T; Cho NJ
    Phys Chem Chem Phys; 2019 Jul; 21(30):16686-16693. PubMed ID: 31317978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach.
    Ratto TV; Longo ML
    Biophys J; 2002 Dec; 83(6):3380-92. PubMed ID: 12496105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of water hydrating the galactolipid and phospholipid bilayers: a molecular dynamics simulation study.
    Markiewicz M; Baczyński K; Pasenkiewicz-Gierula M
    Acta Biochim Pol; 2015; 62(3):475-81. PubMed ID: 26291044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of support corrugation on silica xerogel--supported phase-separated lipid bilayers.
    Goksu EI; Nellis BA; Lin WC; Satcher JH; Groves JT; Risbud SH; Longo ML
    Langmuir; 2009 Apr; 25(6):3713-7. PubMed ID: 19708250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy.
    Skaug MJ; Faller R; Longo ML
    J Chem Phys; 2011 Jun; 134(21):215101. PubMed ID: 21663377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer simulation of the temperature- and hydration-dependent lateral diffusion of phosphatidylcholine in lipid bilayers.
    Galle J; Volke F
    Biophys Chem; 1995 Apr; 54(2):109-17. PubMed ID: 7756563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli.
    Barriga HM; Booth P; Haylock S; Bazin R; Templer RH; Ces O
    J R Soc Interface; 2014 Sep; 11(98):20140404. PubMed ID: 25008079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural disruption of phospholipid bilayers over a range of length scales by n-butanol.
    Setiawan I; Blanchard GJ
    J Phys Chem B; 2014 Mar; 118(11):3085-93. PubMed ID: 24571731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy.
    Liu J; Conboy JC
    Biophys J; 2005 Oct; 89(4):2522-32. PubMed ID: 16085770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulsed field gradient nuclear magnetic resonance study of time-dependent diffusion behavior and exchange of lipids in planar-supported lipid bilayers.
    Sanders M; Mueller R; Menjoge A; Vasenkov S
    J Phys Chem B; 2009 Oct; 113(43):14355-64. PubMed ID: 19795901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale Substrate Roughness Hinders Domain Formation in Supported Lipid Bilayers.
    Goodchild JA; Walsh DL; Connell SD
    Langmuir; 2019 Nov; 35(47):15352-15363. PubMed ID: 31626551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of Molecular Diffusion at Block Copolymer Thin Films Using Maximum Entropy Method-Based Fluorescence Correlation Spectroscopy and Single Molecule Tracking.
    Xue L; Jin S; Nagasaka S; Higgins DA; Ito T
    J Fluoresc; 2022 Sep; 32(5):1779-1787. PubMed ID: 35689743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the association of triblock copolymers with supported lipid membranes using microcantilevers.
    Wang J; Segatori L; Biswal SL
    Soft Matter; 2014 Sep; 10(34):6417-24. PubMed ID: 24978842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of charge density on bilayer bending rigidity in lipid vesicles: a combined dynamic light scattering and neutron spin-echo study.
    Brüning B; Stehle R; Falus P; Farago B
    Eur Phys J E Soft Matter; 2013 Jul; 36(7):77. PubMed ID: 23884623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.