These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 24886033)

  • 1. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum.
    Guyon K; Balagué C; Roby D; Raffaele S
    BMC Genomics; 2014 May; 15(1):336. PubMed ID: 24886033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea.
    Heard S; Brown NA; Hammond-Kosack K
    PLoS One; 2015; 10(6):e0130534. PubMed ID: 26107498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families.
    Ibrahim HMM; Kusch S; Didelon M; Raffaele S
    Mol Plant Pathol; 2021 Jan; 22(1):31-47. PubMed ID: 33111422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Draft genome sequencing and secretome profiling of Sclerotinia sclerotiorum revealed effector repertoire diversity and allied broad-host range necrotrophy.
    Gupta NC; Yadav S; Arora S; Mishra DC; Budhlakoti N; Gaikwad K; Rao M; Prasad L; Rai PK; Sharma P
    Sci Rep; 2022 Dec; 12(1):21855. PubMed ID: 36528657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum.
    Hu Y; Gong H; Lu Z; Zhang P; Zheng S; Wang J; Tian B; Fang A; Yang Y; Bi C; Cheng J; Yu Y
    Microbiol Spectr; 2023 Jun; 11(3):e0098623. PubMed ID: 37140432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts.
    Allan J; Regmi R; Denton-Giles M; Kamphuis LG; Derbyshire MC
    Sci Rep; 2019 Dec; 9(1):19966. PubMed ID: 31882688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sclerotinia sclerotiorum Response to Long Exposure to Glucosinolate Hydrolysis Products by Transcriptomic Approach.
    Madloo P; Lema M; Cartea ME; Soengas P
    Microbiol Spectr; 2021 Sep; 9(1):e0018021. PubMed ID: 34259546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance.
    Derbyshire M; Mbengue M; Barascud M; Navaud O; Raffaele S
    Mol Plant Pathol; 2019 Sep; 20(9):1279-1297. PubMed ID: 31361080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly.
    Newman TE; Kim H; Khentry Y; Sohn KH; Derbyshire MC; Kamphuis LG
    Mol Plant Pathol; 2023 Aug; 24(8):866-881. PubMed ID: 37038612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum.
    Derbyshire MC; Newman TE; Khentry Y; Owolabi Taiwo A
    Mol Plant Pathol; 2022 Aug; 23(8):1075-1090. PubMed ID: 35411696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance.
    Zhu W; Wei W; Fu Y; Cheng J; Xie J; Li G; Yi X; Kang Z; Dickman MB; Jiang D
    PLoS One; 2013; 8(1):e53901. PubMed ID: 23342034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle.
    Kabbage M; Yarden O; Dickman MB
    Plant Sci; 2015 Apr; 233():53-60. PubMed ID: 25711813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis.
    Westrick NM; Ranjan A; Jain S; Grau CR; Smith DL; Kabbage M
    BMC Genomics; 2019 Feb; 20(1):157. PubMed ID: 30808300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of an in vitro system to trigger changes in the gene expression of effectors of Sclerotinia sclerotiorum.
    Maximiano MR; Miranda VJ; de Barros EG; Dias SC
    J Appl Microbiol; 2021 Aug; 131(2):885-897. PubMed ID: 33331046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum.
    Zhuang X; McPhee KE; Coram TE; Peever TL; Chilvers MI
    BMC Genomics; 2012 Nov; 13():668. PubMed ID: 23181755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum.
    Li X; Guo M; Xu D; Chen F; Zhang H; Pan Y; Li M; Gao Z
    Mycologia; 2015; 107(6):1130-7. PubMed ID: 26297780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effector SsCVNH promotes the virulence of Sclerotinia sclerotiorum through targeting class III peroxidase AtPRX71.
    Ma M; Tang L; Sun R; Lyu X; Xie J; Fu Y; Li B; Chen T; Lin Y; Yu X; Chen W; Jiang D; Cheng J
    Mol Plant Pathol; 2024 May; 25(5):e13464. PubMed ID: 38695733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic Analysis Reveals the Importance of Exudates on Sclerotial Development in
    Tian J; Chen C; Sun H; Wang Z; Steinkellner S; Feng J; Liang Y
    J Agric Food Chem; 2021 Feb; 69(4):1430-1440. PubMed ID: 33481591
    [No Abstract]   [Full Text] [Related]  

  • 20. Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics.
    Mousavi-Derazmahalleh M; Chang S; Thomas G; Derbyshire M; Bayer PE; Edwards D; Nelson MN; Erskine W; Lopez-Ruiz FJ; Clements J; Hane JK
    BMC Genomics; 2019 May; 20(1):385. PubMed ID: 31101009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.