These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 24886253)

  • 1. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors.
    Foussier J; Teichmann D; Jia J; Misgeld B; Leonhardt S
    BMC Med Inform Decis Mak; 2014 May; 14():37. PubMed ID: 24886253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique.
    Nakajima K; Tamura T; Miike H
    Med Eng Phys; 1996 Jul; 18(5):365-72. PubMed ID: 8818134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer.
    Lepine NN; Tajima T; Ogasawara T; Kasahara R; Koizumi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3797-3800. PubMed ID: 28269113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor Fusion of Cardiorespiratory Signals Using an Adaptive Kalman Filter
    Linschmann O; Horstmann T; Leonhardt S; Lueken M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter.
    Nez A; Fradet L; Marin F; Monnet T; Lacouture P
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO
    Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Contact, Simple Neonatal Monitoring by Photoplethysmography.
    Cobos-Torres JC; Abderrahim M; Martínez-Orgado J
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Physiological Monitoring with a Wearable Opto-Electronic Patch Sensor (OEPS) for Motion Reduction.
    Alzahrani A; Hu S; Azorin-Peris V
    Biosensors (Basel); 2015 Jun; 5(2):288-307. PubMed ID: 26061828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of heart rate and respiratory rate by monitoring cardiopulmonary signals with flexible sensor.
    Chen J; Qiu H; Zhou W; Huang X; Yan W; Wang D; Xu W
    Biomed Tech (Berl); 2024 Jun; 69(3):265-274. PubMed ID: 37965772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PARHELIA: Particle Filter-Based Heart Rate Estimation From Photoplethysmographic Signals During Physical Exercise.
    Fujita Y; Hiromoto M; Sato T
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):189-198. PubMed ID: 28459679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Real-time monitoring method for ECG signals based on Kalman filter technique].
    Han Q; Wang P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):215-8. PubMed ID: 17333925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Guide to Measuring Heart and Respiratory Rates Based on Off-the-Shelf Photoplethysmographic Hardware and Open-Source Software.
    Stevens G; Hantson L; Larmuseau M; Heerman JR; Siau V; Verdonck P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.
    Teichmann D; De Matteis D; Bartelt T; Walter M; Leonhardt S
    IEEE J Biomed Health Inform; 2015 May; 19(3):784-93. PubMed ID: 25826812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
    Gao S; Liu Y; Wang J; Deng W; Oh H
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27438835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heart Rate monitoring during physical exercise using wrist-type photoplethysmographic (PPG) signals.
    Ahmadi AK; Moradi P; Malihi M; Karimi S; Shamsollahi MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6166-9. PubMed ID: 26737700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise.
    Jarchi D; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3155-2158. PubMed ID: 28268977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble Empirical Mode Decomposition With Principal Component Analysis: A Novel Approach for Extracting Respiratory Rate and Heart Rate From Photoplethysmographic Signal.
    Motin MA; Karmakar CK; Palaniswami M
    IEEE J Biomed Health Inform; 2018 May; 22(3):766-774. PubMed ID: 28287994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble Learning Approach via Kalman Filtering for a Passive Wearable Respiratory Monitor.
    Acharya S; Mongan WM; Rasheed I; Liu Y; Anday E; Dion G; Fontecchio A; Kurzweg T; Dandekar KR
    IEEE J Biomed Health Inform; 2019 May; 23(3):1022-1031. PubMed ID: 30040664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis.
    Ghamari M; Soltanpur C; Cabrera S; Romero R; Martinek R; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4967-4970. PubMed ID: 28269383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquiring Respiration Rate from Photoplethysmographic Signal by Recursive Bayesian Tracking of Intrinsic Modes in Time-Frequency Spectra.
    Pirhonen M; Peltokangas M; Vehkaoja A
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.