These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24886501)
1. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501 [TBL] [Abstract][Full Text] [Related]
2. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Zaushitsyna O; Dishisha T; Hatti-Kaul R; Mattiasson B J Biotechnol; 2017 Jan; 241():22-32. PubMed ID: 27829124 [TBL] [Abstract][Full Text] [Related]
3. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Dishisha T; Pyo SH; Hatti-Kaul R Microb Cell Fact; 2015 Dec; 14():200. PubMed ID: 26690945 [TBL] [Abstract][Full Text] [Related]
4. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes. Sabet-Azad R; Sardari RR; Linares-Pastén JA; Hatti-Kaul R Bioresour Technol; 2015 Mar; 180():214-21. PubMed ID: 25614245 [TBL] [Abstract][Full Text] [Related]
5. Semicarbazide-functionalized resin as a new scavenger for in situ recovery of 3-hydroxypropionaldehyde during biotransformation of glycerol by Lactobacillus reuteri. Sardari RR; Dishisha T; Pyo SH; Hatti-Kaul R J Biotechnol; 2014 Dec; 192 Pt A():223-30. PubMed ID: 25456063 [TBL] [Abstract][Full Text] [Related]
6. Lactobacillus reuteri NAD(P)H oxidase: Properties and coexpression with propanediol-utilization enzymes for enhancing 3-hydroxypropionic acid production from 3-hydroxypropionaldehyde. Dishisha T; Sabet-Azad R; Arieta V; Hatti-Kaul R J Biotechnol; 2019 Jan; 289():135-143. PubMed ID: 30503904 [TBL] [Abstract][Full Text] [Related]
7. Exploring Lactobacillus reuteri DSM20016 as a biocatalyst for transformation of longer chain 1,2-diols: Limits with microcompartment. Chen L; Hatti-Kaul R PLoS One; 2017; 12(9):e0185734. PubMed ID: 28957423 [TBL] [Abstract][Full Text] [Related]
9. Efficient poly(3-hydroxypropionate) production from glycerol using Lactobacillus reuteri and recombinant Escherichia coli harboring L. reuteri propionaldehyde dehydrogenase and Chromobacterium sp. PHA synthase genes. Linares-Pastén JA; Sabet-Azad R; Pessina L; Sardari RR; Ibrahim MH; Hatti-Kaul R Bioresour Technol; 2015 Mar; 180():172-6. PubMed ID: 25600014 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation of glycerol to 3-hydroxypropionaldehyde: improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger. Sardari RR; Dishisha T; Pyo SH; Hatti-Kaul R J Biotechnol; 2013 Dec; 168(4):534-42. PubMed ID: 24060827 [TBL] [Abstract][Full Text] [Related]
11. Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity. Krauter H; Willke T; Vorlop KD N Biotechnol; 2012 Jan; 29(2):211-7. PubMed ID: 21729774 [TBL] [Abstract][Full Text] [Related]
12. 1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production. Stevens MJ; Vollenweider S; Meile L; Lacroix C Microb Cell Fact; 2011 Aug; 10():61. PubMed ID: 21812997 [TBL] [Abstract][Full Text] [Related]
13. Improved production of 3-hydroxypropionaldehyde by complex formation with bisulfite during biotransformation of glycerol. Sardari RR; Dishisha T; Pyo SH; Hatti-Kaul R Biotechnol Bioeng; 2013 Apr; 110(4):1243-8. PubMed ID: 23172314 [TBL] [Abstract][Full Text] [Related]
14. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri. Suppuram P; Ramakrishnan GG; Subramanian R Biosci Biotechnol Biochem; 2019 Apr; 83(4):755-762. PubMed ID: 30582401 [TBL] [Abstract][Full Text] [Related]
15. Diversity of Lactobacillus reuteri Strains in Converting Glycerol into 3-Hydroxypropionic Acid. Burgé G; Saulou-Bérion C; Moussa M; Pollet B; Flourat A; Allais F; Athès V; Spinnler HE Appl Biochem Biotechnol; 2015 Oct; 177(4):923-39. PubMed ID: 26319567 [TBL] [Abstract][Full Text] [Related]
16. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism. Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590 [TBL] [Abstract][Full Text] [Related]
17. Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Liu F; Yu B Appl Microbiol Biotechnol; 2015 Jun; 99(11):4659-66. PubMed ID: 25805344 [TBL] [Abstract][Full Text] [Related]
18. Influence of environmental and genetic factors on 3-hydoxypropionaldehyde production by Lactobacillus reuteri. Ortiz-Rivera Y; Sánchez-Vega R; Acosta-Muñiz CH; Gutiérrez-Méndez N; León-Félix J; Sepulveda DR J Basic Microbiol; 2018 Dec; 58(12):1053-1060. PubMed ID: 30240033 [TBL] [Abstract][Full Text] [Related]
19. Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Kumar V; Sankaranarayanan M; Jae KE; Durgapal M; Ashok S; Ko Y; Sarkar R; Park S Appl Microbiol Biotechnol; 2012 Oct; 96(2):373-83. PubMed ID: 22684326 [TBL] [Abstract][Full Text] [Related]
20. 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Hao J; Lin R; Zheng Z; Sun Y; Liu D J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1615-24. PubMed ID: 18685876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]