These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites. Fink K Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631 [TBL] [Abstract][Full Text] [Related]
7. Site-dependent stability and electronic structure of single vacancy point defects in hexagonal graphene nano-flakes. Shi H; Barnard AS; Snook IK Phys Chem Chem Phys; 2013 Apr; 15(14):4897-905. PubMed ID: 23420228 [TBL] [Abstract][Full Text] [Related]
8. Introducing novel electronic and magnetic properties in C Bafekry A; Farjami Shayesteh S; Peeters FM Phys Chem Chem Phys; 2019 Oct; 21(37):21070-21083. PubMed ID: 31528958 [TBL] [Abstract][Full Text] [Related]
9. Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Menezes MG; Capaz RB J Phys Condens Matter; 2015 Aug; 27(33):335302. PubMed ID: 26241104 [TBL] [Abstract][Full Text] [Related]
10. On the influence of point defects on the structural and electronic properties of graphene-like sheets: a molecular simulation study. Chigo Anota E; Escobedo-Morales A; Salazar Villanueva M; Vázquez-Cuchillo O; Rubio Rosas E J Mol Model; 2013 Feb; 19(2):839-46. PubMed ID: 23065142 [TBL] [Abstract][Full Text] [Related]
11. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides. Linderälv C; Lindman A; Erhart P J Phys Chem Lett; 2018 Jan; 9(1):222-228. PubMed ID: 29265821 [TBL] [Abstract][Full Text] [Related]
12. Electronic Nature Transition and Magnetism Creation in Vacancy-Defected Ti Sakhraoui T; Karlický F ACS Omega; 2022 Nov; 7(46):42221-42232. PubMed ID: 36440157 [TBL] [Abstract][Full Text] [Related]
13. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. Johari P; Shenoy VB ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Reaction-Induced Defect Engineering: Enhanced Visible and Near-Infrared Absorption of Wide Band Gap Metal Oxides with Abundant Oxygen Vacancies. Qi F; Yang Z; Zhang J; Wang Y; Qiu Q; Li H ACS Appl Mater Interfaces; 2020 Dec; 12(49):55417-55425. PubMed ID: 33236881 [TBL] [Abstract][Full Text] [Related]
15. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: a first-principles study. Liu X; Yao KX; Meng C; Han Y Dalton Trans; 2012 Jan; 41(4):1289-96. PubMed ID: 22134739 [TBL] [Abstract][Full Text] [Related]
16. Electronic structure of BSb defective monolayers and nanoribbons. Ersan F; Gökoğlu G; Aktürk E J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113 [TBL] [Abstract][Full Text] [Related]
17. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy. Kim DH; Kim HS; Song MW; Lee S; Lee SY Nano Converg; 2017; 4(1):13. PubMed ID: 28616375 [TBL] [Abstract][Full Text] [Related]
19. Properties of intrinsic point defects and dimers in hexagonal boron nitride. Strand J; Larcher L; Shluger AL J Phys Condens Matter; 2020 Jan; 32(5):055706. PubMed ID: 31618727 [TBL] [Abstract][Full Text] [Related]
20. On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models. Carrasco J; Lopez N; Illas F J Chem Phys; 2005 Jun; 122(22):224705. PubMed ID: 15974701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]