These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24886780)

  • 1. Advancing bag-of-visual-words representations for lesion classification in retinal images.
    Pires R; Jelinek HF; Wainer J; Valle E; Rocha A
    PLoS One; 2014; 9(6):e96814. PubMed ID: 24886780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Need for Referral in Automatic Diabetic Retinopathy Detection.
    Pires R; Jelinek HF; Wainer J; Goldenstein S; Valle E; Rocha A
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3391-8. PubMed ID: 23963192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Diabetic Retinopathy detection using BossaNova representation.
    Pires R; Avila S; Jelinek HF; Wainer J; Valle E; Rocha A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():146-9. PubMed ID: 25569918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and classification of retinal lesions for grading of diabetic retinopathy.
    Usman Akram M; Khalid S; Tariq A; Khan SA; Azam F
    Comput Biol Med; 2014 Feb; 45():161-71. PubMed ID: 24480176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Texture-specific bag of visual words model and spatial cone matching-based method for the retrieval of focal liver lesions using multiphase contrast-enhanced CT images.
    Xu Y; Lin L; Hu H; Wang D; Zhu W; Wang J; Han XH; Chen YW
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):151-164. PubMed ID: 29105019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of retinal images containing bright lesions using sparse coded features and SVM.
    Sidibé D; Sadek I; Mériaudeau F
    Comput Biol Med; 2015 Jul; 62():175-84. PubMed ID: 25935125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning system for detecting diabetic retinopathy across the disease spectrum.
    Dai L; Wu L; Li H; Cai C; Wu Q; Kong H; Liu R; Wang X; Hou X; Liu Y; Long X; Wen Y; Lu L; Shen Y; Chen Y; Shen D; Yang X; Zou H; Sheng B; Jia W
    Nat Commun; 2021 May; 12(1):3242. PubMed ID: 34050158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Lesion-Based Diabetic Retinopathy: A Direct Approach for Referral.
    Pires R; Avila S; Jelinek HF; Wainer J; Valle E; Rocha A
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):193-200. PubMed ID: 26561488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care.
    Pires R; Carvalho T; Spurling G; Goldenstein S; Wainer J; Luckie A; Jelinek HF; Rocha A
    PLoS One; 2015; 10(6):e0127664. PubMed ID: 26035836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated classification of diabetic retinopathy through reliable feature selection.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2020 Sep; 43(3):927-945. PubMed ID: 32648111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature extraction and selection for the automatic detection of hard exudates in retinal images.
    Garcia M; Hornero R; Sánchez CI; López MI; Diez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.