These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration. Trofimova Y; Walker G; Rapoport A FEMS Microbiol Lett; 2010 Jul; 308(1):55-61. PubMed ID: 20487021 [TBL] [Abstract][Full Text] [Related]
3. Anhydrobiosis in yeast: FT-IR spectroscopic studies of yeast grown under conditions of severe oxygen limitation. Grube M; Gavare M; Rozenfelde L; Rapoport A Biotechnol Appl Biochem; 2014; 61(4):474-9. PubMed ID: 24923424 [TBL] [Abstract][Full Text] [Related]
4. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals. Rapoport A; Turchetti B; Buzzini P World J Microbiol Biotechnol; 2016 Jun; 32(6):104. PubMed ID: 27116970 [TBL] [Abstract][Full Text] [Related]
5. Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation? Rozenfelde L; Rapoport A Antonie Van Leeuwenhoek; 2014 Aug; 106(2):211-7. PubMed ID: 24791685 [TBL] [Abstract][Full Text] [Related]
6. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307 [TBL] [Abstract][Full Text] [Related]
7. Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress. López-Martínez G; Pietrafesa R; Romano P; Cordero-Otero R; Capece A Yeast; 2013 Aug; 30(8):319-30. PubMed ID: 23576041 [TBL] [Abstract][Full Text] [Related]
8. Effects of yeast immobilization on bioethanol production. Borovikova D; Scherbaka R; Patmalnieks A; Rapoport A Biotechnol Appl Biochem; 2014; 61(1):33-9. PubMed ID: 24180336 [TBL] [Abstract][Full Text] [Related]
9. [Effect of glutamic acid on Saccharomyces cerevisiae cell permeability during rehydration after dehydration]. Ramnietse VE; Skard IV; Popova MV Mikrobiologiia; 1978; 47(3):430-5. PubMed ID: 353448 [TBL] [Abstract][Full Text] [Related]
10. The effect of magnesium ions during beer fermentation. Pironcheva GL Cytobios; 1998; 94(377):135-9. PubMed ID: 9871986 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions. Moraitis C; Curran BP Yeast; 2010 Feb; 27(2):103-14. PubMed ID: 20014153 [TBL] [Abstract][Full Text] [Related]
12. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins. Soares-Costa A; Nakayama DG; Andrade Lde F; Catelli LF; Bassi AP; Ceccato-Antonini SR; Henrique-Silva F N Biotechnol; 2014 Jan; 31(1):90-7. PubMed ID: 24013100 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers' strains. Dueñas-Sánchez R; Gutiérrez G; Rincón AM; Codón AC; Benítez T FEMS Yeast Res; 2012 Sep; 12(6):625-36. PubMed ID: 22591337 [TBL] [Abstract][Full Text] [Related]
14. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
15. Simple improvement in freeze-tolerance of bakers' yeast with poly-gamma-glutamate. Yokoigawa K; Sato M; Soda K J Biosci Bioeng; 2006 Sep; 102(3):215-9. PubMed ID: 17046536 [TBL] [Abstract][Full Text] [Related]
16. [Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism]. Hu CK; Bai FW; An LJ Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):123-8. PubMed ID: 15859341 [TBL] [Abstract][Full Text] [Related]
17. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Pina C; Couto JA; Hogg T Biotechnol Lett; 2004 Oct; 26(19):1521-7. PubMed ID: 15604791 [TBL] [Abstract][Full Text] [Related]
18. Anhydrobiosis in yeasts: Glutathione synthesis by yeast Ogataea (Hansenula) polymorpha cells after their dehydration-rehydration. Kurylenko O; Rozenfelde L; Khroustalyova G; Vasylyshyn R; Ruchala J; Chang CR; Daugelavicius R; Sibirny A; Rapoport A J Biotechnol; 2019 Oct; 304():28-30. PubMed ID: 31415788 [TBL] [Abstract][Full Text] [Related]
19. Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Kulikova-Borovikova D; Lisi S; Dauss E; Alamae T; Buzzini P; Hallsworth JE; Rapoport A Fungal Biol; 2018 Jun; 122(6):613-620. PubMed ID: 29801806 [TBL] [Abstract][Full Text] [Related]
20. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]