These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 24886923)

  • 1. Neural network for estimating energy expenditure in paraplegics from heart rate.
    García-Massó X; Serra-Añó P; García-Raffi L; Sánchez-Pérez E; Giner-Pascual M; González LM
    Int J Sports Med; 2014 Nov; 35(12):1037-43. PubMed ID: 24886923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury.
    García-Massó X; Serra-Añó P; García-Raffi LM; Sánchez-Pérez EA; López-Pascual J; Gonzalez LM
    Spinal Cord; 2013 Dec; 51(12):898-903. PubMed ID: 23999111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart rate as a predictor of energy expenditure in people with spinal cord injury.
    Hayes AM; Myers JN; Ho M; Lee MY; Perkash I; Kiratli BJ
    J Rehabil Res Dev; 2005; 42(5):617-24. PubMed ID: 16586187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia.
    Asselin P; Knezevic S; Kornfeld S; Cirnigliaro C; Agranova-Breyter I; Bauman WA; Spungen AM
    J Rehabil Res Dev; 2015; 52(2):147-58. PubMed ID: 26230182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved estimation of energy expenditure by artificial neural network modeling.
    Hay DC; Wakayama A; Sakamura K; Fukashiro S
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1213-22. PubMed ID: 19088780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.
    Kolus A; Imbeau D; Dubé PA; Dubeau D
    Appl Ergon; 2015 Sep; 50():68-78. PubMed ID: 25959320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen uptake and heart rate relationship in persons with spinal cord injury.
    Hooker SP; Greenwood JD; Hatae DT; Husson RP; Matthiesen TL; Waters AR
    Med Sci Sports Exerc; 1993 Oct; 25(10):1115-9. PubMed ID: 8231755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the precision and accuracy for estimating energy expenditure using the heart rate method.
    Green JA; Frappell PB
    Physiol Biochem Zool; 2007; 80(5):551-5. PubMed ID: 17717818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological cost index of paraplegic locomotion using the ORLAU ParaWalker.
    Nene AV; Jennings SJ
    Paraplegia; 1992 Apr; 30(4):246-52. PubMed ID: 1625892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.
    Kolus A; Dubé PA; Imbeau D; Labib R; Dubeau D
    Appl Ergon; 2014 Nov; 45(6):1475-83. PubMed ID: 24793823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of energy expenditure from heart rate monitoring during submaximal exercise.
    Keytel LR; Goedecke JH; Noakes TD; Hiiloskorpi H; Laukkanen R; van der Merwe L; Lambert EV
    J Sports Sci; 2005 Mar; 23(3):289-97. PubMed ID: 15966347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Heart rate and physical activity to assess energy expenditure in children].
    Filozof CM; González C; Perman M; Salinas R
    Medicina (B Aires); 1999; 59(6):727-30. PubMed ID: 10752216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of heart-rate based measurements of oxygen consumption during work with light and moderate physical activity.
    Bernmark E; Forsman M; Pernold G; Wiktorin C
    Work; 2012; 41 Suppl 1():5475-6. PubMed ID: 22317589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating MET values using the ratio of HR for persons with paraplegia.
    Lee M; Zhu W; Hedrick B; Fernhall B
    Med Sci Sports Exerc; 2010 May; 42(5):985-90. PubMed ID: 19997011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy balance during backpacking.
    Hill LC; Swain DP; Hill EL
    Int J Sports Med; 2008 Nov; 29(11):883-7. PubMed ID: 18418809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new heart rate variability-based method for the estimation of oxygen consumption without individual laboratory calibration: application example on postal workers.
    Smolander J; Juuti T; Kinnunen ML; Laine K; Louhevaara V; Männikkö K; Rusko H
    Appl Ergon; 2008 May; 39(3):325-31. PubMed ID: 17950689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion.
    Gaffurini P; Bissolotti L; Calza S; Calabretto C; Orizio C; Gobbo M
    Eur J Phys Rehabil Med; 2013 Feb; 49(1):23-9. PubMed ID: 23370043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.