These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24886978)

  • 1. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm.
    Höhne J; Tangermann M
    PLoS One; 2014; 9(6):e98322. PubMed ID: 24886978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.
    An X; Höhne J; Ming D; Blankertz B
    PLoS One; 2014; 9(10):e111070. PubMed ID: 25350547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (C)overt attention and visual speller design in an ERP-based brain-computer interface.
    Treder MS; Blankertz B
    Behav Brain Funct; 2010 May; 6():28. PubMed ID: 20509913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI).
    Kaufmann T; Kübler A
    J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Listen, You are Writing! Speeding up Online Spelling with a Dynamic Auditory BCI.
    Schreuder M; Rost T; Tangermann M
    Front Neurosci; 2011; 5():112. PubMed ID: 22016719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of training and motivation on auditory P300 brain-computer interface performance.
    Baykara E; Ruf CA; Fioravanti C; Käthner I; Simon N; Kleih SC; Kübler A; Halder S
    Clin Neurophysiol; 2016 Jan; 127(1):379-387. PubMed ID: 26051753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel 9-Class Auditory ERP Paradigm Driving a Predictive Text Entry System.
    Höhne J; Schreuder M; Blankertz B; Tangermann M
    Front Neurosci; 2011; 5():99. PubMed ID: 21909321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern.
    Borirakarawin M; Punsawad Y
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients.
    Kübler A; Furdea A; Halder S; Hammer EM; Nijboer F; Kotchoubey B
    Ann N Y Acad Sci; 2009 Mar; 1157():90-100. PubMed ID: 19351359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An auditory brain-computer interface using virtual sound field.
    Gao H; Ouyang M; Zhang D; Hong B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4568-71. PubMed ID: 22255354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state.
    Pires G; Barbosa S; Nunes UJ; Gonçalves E
    J Neurosci Methods; 2022 Sep; 379():109661. PubMed ID: 35817307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion with language models improves spelling accuracy for ERP-based brain computer interface spellers.
    Orhan U; Erdogmus D; Roark B; Purwar S; Hild KE; Oken B; Nezamfar H; Fried-Oken M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5774-7. PubMed ID: 22255652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning.
    Ogino M; Hamada N; Mitsukura Y
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357
    [No Abstract]   [Full Text] [Related]  

  • 18. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an enhanced ERP speller based on the visual processing of face familiarity.
    Yeom SK; Fazli S; Müller KR; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1330-3. PubMed ID: 25570213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces.
    Ogino M; Kanoga S; Muto M; Mitsukura Y
    Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.