These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 24887099)
1. The F₄₂₀-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. Vitt S; Ma K; Warkentin E; Moll J; Pierik AJ; Shima S; Ermler U J Mol Biol; 2014 Jul; 426(15):2813-26. PubMed ID: 24887099 [TBL] [Abstract][Full Text] [Related]
2. De novo modeling of the F(420)-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Mills DJ; Vitt S; Strauss M; Shima S; Vonck J Elife; 2013 Mar; 2():e00218. PubMed ID: 23483797 [TBL] [Abstract][Full Text] [Related]
3. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Stojanowic A; Mander GJ; Duin EC; Hedderich R Arch Microbiol; 2003 Sep; 180(3):194-203. PubMed ID: 12856108 [TBL] [Abstract][Full Text] [Related]
4. [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Rousset M; Montet Y; Guigliarelli B; Forget N; Asso M; Bertrand P; Fontecilla-Camps JC; Hatchikian EC Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11625-30. PubMed ID: 9751716 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). Ogata H; Kellers P; Lubitz W J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834 [TBL] [Abstract][Full Text] [Related]
6. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Karstens K; Wahlefeld S; Horch M; Grunzel M; Lauterbach L; Lendzian F; Zebger I; Lenz O Biochemistry; 2015 Jan; 54(2):389-403. PubMed ID: 25517969 [TBL] [Abstract][Full Text] [Related]
7. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mossbauer and EPR spectroscopy. Pandelia ME; Bykov D; Izsak R; Infossi P; Giudici-Orticoni MT; Bill E; Neese F; Lubitz W Proc Natl Acad Sci U S A; 2013 Jan; 110(2):483-8. PubMed ID: 23267108 [TBL] [Abstract][Full Text] [Related]
8. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Thauer RK; Kaster AK; Goenrich M; Schick M; Hiromoto T; Shima S Annu Rev Biochem; 2010; 79():507-36. PubMed ID: 20235826 [TBL] [Abstract][Full Text] [Related]
9. Characterization of BciB: a ferredoxin-dependent 8-vinyl-protochlorophyllide reductase from the green sulfur bacterium Chloroherpeton thalassium. Saunders AH; Golbeck JH; Bryant DA Biochemistry; 2013 Nov; 52(47):8442-51. PubMed ID: 24151992 [TBL] [Abstract][Full Text] [Related]
10. Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae. Bingemann R; Klein A Eur J Biochem; 2000 Nov; 267(22):6612-8. PubMed ID: 11054113 [TBL] [Abstract][Full Text] [Related]
11. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Watanabe S; Matsumi R; Arai T; Atomi H; Imanaka T; Miki K Mol Cell; 2007 Jul; 27(1):29-40. PubMed ID: 17612488 [TBL] [Abstract][Full Text] [Related]
13. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
14. Redox-dependent conformational changes of a proximal [4Fe-4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O Noor NDM; Matsuura H; Nishikawa K; Tai H; Hirota S; Kim J; Kang J; Tateno M; Yoon KS; Ogo S; Kubota S; Shomura Y; Higuchi Y Chem Commun (Camb); 2018 Oct; 54(87):12385-12388. PubMed ID: 30328414 [TBL] [Abstract][Full Text] [Related]
15. A third type of hydrogenase catalyzing H2 activation. Shima S; Thauer RK Chem Rec; 2007; 7(1):37-46. PubMed ID: 17304591 [TBL] [Abstract][Full Text] [Related]
16. Redox-dependent structural transformations of the [4Fe-3S] proximal cluster in O2-tolerant membrane-bound [NiFe]-hydrogenase: a DFT study. Pelmenschikov V; Kaupp M J Am Chem Soc; 2013 Aug; 135(32):11809-23. PubMed ID: 23848168 [TBL] [Abstract][Full Text] [Related]
17. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase. Tai H; Nishikawa K; Suzuki M; Higuchi Y; Hirota S Angew Chem Int Ed Engl; 2014 Dec; 53(50):13817-20. PubMed ID: 25297065 [TBL] [Abstract][Full Text] [Related]
18. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H; Lubitz W; Higuchi Y Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926 [TBL] [Abstract][Full Text] [Related]
19. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. Fauque G; Peck HD; Moura JJ; Huynh BH; Berlier Y; DerVartanian DV; Teixeira M; Przybyla AE; Lespinat PA; Moura I FEMS Microbiol Rev; 1988 Dec; 4(4):299-344. PubMed ID: 3078655 [TBL] [Abstract][Full Text] [Related]