These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24887157)
1. A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer. Lee H; Kim J; Kim H; Kim Y; Choi Y Chem Commun (Camb); 2014 Jul; 50(56):7507-10. PubMed ID: 24887157 [TBL] [Abstract][Full Text] [Related]
2. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy. Kim J; Tung CH; Choi Y Chem Commun (Camb); 2014 Sep; 50(73):10600-3. PubMed ID: 25089302 [TBL] [Abstract][Full Text] [Related]
3. Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Moon WK; Lin Y; O'Loughlin T; Tang Y; Kim DE; Weissleder R; Tung CH Bioconjug Chem; 2003; 14(3):539-45. PubMed ID: 12757377 [TBL] [Abstract][Full Text] [Related]
4. A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. Tung CH; Lin Y; Moon WK; Weissleder R Chembiochem; 2002 Aug; 3(8):784-6. PubMed ID: 12203978 [No Abstract] [Full Text] [Related]
5. A Fluorescent Probe for Rapid, High-Contrast Visualization of Folate-Receptor-Expressing Tumors In Vivo. Numasawa K; Hanaoka K; Saito N; Yamaguchi Y; Ikeno T; Echizen H; Yasunaga M; Komatsu T; Ueno T; Miura M; Nagano T; Urano Y Angew Chem Int Ed Engl; 2020 Apr; 59(15):6015-6020. PubMed ID: 31984590 [TBL] [Abstract][Full Text] [Related]
6. Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Keating JJ; Runge JJ; Singhal S; Nims S; Venegas O; Durham AC; Swain G; Nie S; Low PS; Holt DE Cancer; 2017 May; 123(6):1051-1060. PubMed ID: 28263385 [TBL] [Abstract][Full Text] [Related]
7. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Chen WT; Mahmood U; Weissleder R; Tung CH Arthritis Res Ther; 2005; 7(2):R310-7. PubMed ID: 15743478 [TBL] [Abstract][Full Text] [Related]
8. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins. Fujii T; Kamiya M; Urano Y Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809 [TBL] [Abstract][Full Text] [Related]
9. Near-infrared emitting fluorescent BODIPY nanovesicles for in vivo molecular imaging and drug delivery. Quan L; Liu S; Sun T; Guan X; Lin W; Xie Z; Huang Y; Wang Y; Jing X ACS Appl Mater Interfaces; 2014 Sep; 6(18):16166-73. PubMed ID: 25159231 [TBL] [Abstract][Full Text] [Related]
10. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Liu JM; Chen JT; Yan XP Anal Chem; 2013 Mar; 85(6):3238-45. PubMed ID: 23413985 [TBL] [Abstract][Full Text] [Related]
11. An intracellularly activatable, fluorogenic probe for cancer imaging. Tian R; Li M; Wang J; Yu M; Kong X; Feng Y; Chen Z; Li Y; Huang W; Wu W; Hong Z Org Biomol Chem; 2014 Aug; 12(29):5365-74. PubMed ID: 24874918 [TBL] [Abstract][Full Text] [Related]
12. Near-infrared fluorescence: application to in vivo molecular imaging. Hilderbrand SA; Weissleder R Curr Opin Chem Biol; 2010 Feb; 14(1):71-9. PubMed ID: 19879798 [TBL] [Abstract][Full Text] [Related]
13. A Ratiometric and near-Infrared Fluorescent Probe for Imaging Cu Guo R; Wang Q; Lin W J Fluoresc; 2017 Sep; 27(5):1655-1660. PubMed ID: 28424935 [TBL] [Abstract][Full Text] [Related]
14. Smart Fluorescent Probe Strategy for Precision Targeting Hypoxic Tumor. Wang Y; Chen L J Med Chem; 2021 Mar; 64(6):2967-2970. PubMed ID: 33728917 [TBL] [Abstract][Full Text] [Related]
15. A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice. Chen K; Yap LP; Park R; Hui X; Wu K; Fan D; Chen X; Conti PS Amino Acids; 2012 Apr; 42(4):1329-37. PubMed ID: 21212998 [TBL] [Abstract][Full Text] [Related]
16. Activatable Near-Infrared Probe for Fluorescence Imaging of γ-Glutamyl Transpeptidase in Tumor Cells and In Vivo. Luo Z; Feng L; An R; Duan G; Yan R; Shi H; He J; Zhou Z; Ji C; Chen HY; Ye D Chemistry; 2017 Oct; 23(59):14778-14785. PubMed ID: 28653778 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and in vitro/in vivo evaluation of 99mTc-labeled folate conjugates for folate receptor imaging. Lu J; Pang Y; Xie F; Guo H; Li Y; Yang Z; Wang X Nucl Med Biol; 2011 May; 38(4):557-65. PubMed ID: 21531293 [TBL] [Abstract][Full Text] [Related]
18. 2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia. Okuda K; Okabe Y; Kadonosono T; Ueno T; Youssif BG; Kizaka-Kondoh S; Nagasawa H Bioconjug Chem; 2012 Mar; 23(3):324-9. PubMed ID: 22335430 [TBL] [Abstract][Full Text] [Related]
19. Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility study in mice. Funovics MA; Weissleder R; Mahmood U Radiology; 2004 Jun; 231(3):659-66. PubMed ID: 15163807 [TBL] [Abstract][Full Text] [Related]
20. A review of NIR dyes in cancer targeting and imaging. Luo S; Zhang E; Su Y; Cheng T; Shi C Biomaterials; 2011 Oct; 32(29):7127-38. PubMed ID: 21724249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]