These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24887741)

  • 21. Detection of temporal changes in psychophysiological data using statistical process control methods.
    Cannon J; Krokhmal PA; Chen Y; Murphey R
    Comput Methods Programs Biomed; 2012 Sep; 107(3):367-81. PubMed ID: 21377752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting slow wave sleep using a single EEG signal channel.
    Su BL; Luo Y; Hong CY; Nagurka ML; Yen CW
    J Neurosci Methods; 2015 Mar; 243():47-52. PubMed ID: 25637866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing EEG sleep spindle propagation. Part 1: theory and proposed methodology.
    O'Reilly C; Nielsen T
    J Neurosci Methods; 2014 Jan; 221():202-14. PubMed ID: 23999176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings.
    Magosso E; Ursino M; Zaniboni A; Provini F; Montagna P
    Clin Neurophysiol; 2007 May; 118(5):1122-33. PubMed ID: 17368090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EOG artifact minimization using oblique projection corrected eigenvector decomposition.
    Zhou Z; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4656-9. PubMed ID: 19163754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Informed decomposition of electroencephalographic data.
    Gordon SM; Lawhern V; Passaro AD; McDowell K
    J Neurosci Methods; 2015 Dec; 256():41-55. PubMed ID: 26306657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data mining techniques for detection of sleep arousals.
    Shmiel O; Shmiel T; Dagan Y; Teicher M
    J Neurosci Methods; 2009 May; 179(2):331-7. PubMed ID: 19428545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing EEG sleep spindle propagation. Part 2: experimental characterization.
    O'Reilly C; Nielsen T
    J Neurosci Methods; 2014 Jan; 221():215-27. PubMed ID: 23999173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-frequency spectral estimation of multichannel EEG using the Auto-SLEX method.
    Cranstoun SD; Ombao HC; von Sachs R; Guo W; Litt B
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):988-96. PubMed ID: 12214888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application of complexity sequence in sleep staging based on sleep EEG data].
    Long F; Zhang D; Fan L; Wu X; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):60-3. PubMed ID: 12744164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interictal spike detection using the Walsh transform.
    Adjouadi M; Sanchez D; Cabrerizo M; Ayala M; Jayakar P; Yaylali I; Barreto A
    IEEE Trans Biomed Eng; 2004 May; 51(5):868-72. PubMed ID: 15132516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of two-channel electro-oculography in automatic detection of unintentional sleep onset.
    Virkkala J; Hasan J; Värri A; Himanen SL; Härmä M
    J Neurosci Methods; 2007 Jun; 163(1):137-44. PubMed ID: 17376536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated detection of neonate EEG sleep stages.
    Piryatinska A; Terdik G; Woyczynski WA; Loparo KA; Scher MS; Zlotnik A
    Comput Methods Programs Biomed; 2009 Jul; 95(1):31-46. PubMed ID: 19233504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multichannel sleep spindle detection using sparse low-rank optimization.
    Parekh A; Selesnick IW; Osorio RS; Varga AW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2017 Aug; 288():1-16. PubMed ID: 28600157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unveil sleep spindles with concentration of frequency and time (ConceFT).
    Shimizu R; Wu HT
    Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39042095
    [No Abstract]   [Full Text] [Related]  

  • 40. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.