BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24888432)

  • 1. Actin sliding velocity on pure myosin isoforms from hindlimb unloaded mice.
    Maffei M; Longa E; Qaisar R; Agoni V; Desaphy JF; Camerino DC; Bottinelli R; Canepari M
    Acta Physiol (Oxf); 2014 Dec; 212(4):316-29. PubMed ID: 24888432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of speed of actin filaments propelled by slow and fast skeletal myosin isoforms.
    Rossi R; Maffei M; Bottinelli R; Canepari M
    J Appl Physiol (1985); 2005 Dec; 99(6):2239-45. PubMed ID: 16099894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin sliding velocity on pure myosin isoforms from dystrophic mouse muscles.
    Canepari M; Rossi R; Pansarasa O; Maffei M; Bottinelli R
    Muscle Nerve; 2009 Aug; 40(2):249-56. PubMed ID: 19609904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-fiber in vitro motility assay. In vitro sliding velocity of F-actin vs. unloaded shortening velocity in skinned muscle fibers.
    Thedinga E; Karim N; Kraft T; Brenner B
    J Muscle Res Cell Motil; 1999 Nov; 20(8):785-96. PubMed ID: 10730581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical interaction of myosin and native thin filament in the disused rat soleus muscle.
    Gerzen O; Potoskueva I; Votinova V; Sergeeva K; Tyganov S; Tzybina A; Shenkman BS; Nikitina L
    Life Sci Space Res (Amst); 2024 May; 41():80-85. PubMed ID: 38670656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of myosin ATPase activity and myosin light chain relative content in the slowing of type IIB fibers with hindlimb unweighting in rats.
    Zhong S; Thompson LV
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C723-8. PubMed ID: 17494635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery.
    Brocca L; Longa E; Cannavino J; Seynnes O; de Vito G; McPhee J; Narici M; Pellegrino MA; Bottinelli R
    J Physiol; 2015 Dec; 593(24):5361-85. PubMed ID: 26369674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics and models of the myosin motor.
    Huxley AF
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):433-40. PubMed ID: 10836496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unit event of sliding of the chemo-mechanical enzyme composed of myosin and actin with regulatory proteins.
    Oosawa F
    Biochem Biophys Res Commun; 2008 Apr; 369(1):144-8. PubMed ID: 18157940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical adaptation to hindlimb suspension: it involves not only transcriptional mechanisms but also post-translational modification of the molecular motor, myosin.
    Pfitzer G
    Acta Physiol (Oxf); 2014 Dec; 212(4):263-6. PubMed ID: 25204547
    [No Abstract]   [Full Text] [Related]  

  • 11. Force-velocity properties and myosin light chain isoform composition of an identified type of skinned fibres from rat skeletal muscle.
    Bottinelli R; Reggiani C
    Pflugers Arch; 1995 Feb; 429(4):592-4. PubMed ID: 7617451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor protein function in skeletal muscle-a multiple scale approach to contractility.
    von Wegner F; Schurmann S; Fink RH; Vogel M; Friedrich O
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1632-42. PubMed ID: 19574163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender- and age-related differences in the regulatory influence of thyroid hormone on the contractility and myosin composition of single rat soleus muscle fibres.
    Yu F; Degens H; Li X; Larsson L
    Pflugers Arch; 1998 Dec; 437(1):21-30. PubMed ID: 9817781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The motor mechanism of myosin V: insights for muscle contraction.
    Sweeney HL; Houdusse A
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1829-41. PubMed ID: 15647159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of the hydrophobic triplet in the motor domain of myosin in the interaction between myosin and actin.
    Hachikubo Y; Ito K; Yamamoto K
    J Biochem; 2003 Jul; 134(1):165-71. PubMed ID: 12944384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay.
    Kopylova GV; Shchepkin DV; Nikitina LV
    Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What limits the velocity of fast-skeletal muscle contraction in mammals?
    Nyitrai M; Rossi R; Adamek N; Pellegrino MA; Bottinelli R; Geeves MA
    J Mol Biol; 2006 Jan; 355(3):432-42. PubMed ID: 16325202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of age and gender on shortening velocity and myosin isoforms in single rat muscle fibres.
    Degens H; Yu F; Li X; Larsson L
    Acta Physiol Scand; 1998 May; 163(1):33-40. PubMed ID: 9648621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres.
    D'Antona G; Pellegrino MA; Adami R; Rossi R; Carlizzi CN; Canepari M; Saltin B; Bottinelli R
    J Physiol; 2003 Oct; 552(Pt 2):499-511. PubMed ID: 14561832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.