BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 24888606)

  • 1. Expression-based network biology identifies immune-related functional modules involved in plant defense.
    Tully JP; Hill AE; Ahmed HM; Whitley R; Skjellum A; Mukhtar MS
    BMC Genomics; 2014 Jun; 15():421. PubMed ID: 24888606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana.
    Ruan J; Perez J; Hernandez B; Lei C; Sunter G; Sponsel VM
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S2. PubMed ID: 22168340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis gene co-expression network and its functional modules.
    Mao L; Van Hemert JL; Dash S; Dickerson JA
    BMC Bioinformatics; 2009 Oct; 10():346. PubMed ID: 19845953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.
    Amrine KC; Blanco-Ulate B; Cantu D
    PLoS One; 2015; 10(3):e0118731. PubMed ID: 25730421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways.
    Ma S; Shah S; Bohnert HJ; Snyder M; Dinesh-Kumar SP
    PLoS Genet; 2013; 9(10):e1003840. PubMed ID: 24098147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FORCA, a promoter element that responds to crosstalk between defense and light signaling.
    Evrard A; Ndatimana T; Eulgem T
    BMC Plant Biol; 2009 Jan; 9():2. PubMed ID: 19128484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis.
    Dong X; Jiang Z; Peng YL; Zhang Z
    Plant Physiol; 2015 Mar; 167(3):1186-203. PubMed ID: 25614062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.
    Spangler JB; Ficklin SP; Luo F; Freeling M; Feltus FA
    PLoS One; 2012; 7(9):e45041. PubMed ID: 23024789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis.
    Wang S; Yin Y; Ma Q; Tang X; Hao D; Xu Y
    BMC Plant Biol; 2012 Aug; 12():138. PubMed ID: 22877077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks.
    Vandepoele K; Quimbaya M; Casneuf T; De Veylder L; Van de Peer Y
    Plant Physiol; 2009 Jun; 150(2):535-46. PubMed ID: 19357200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic identification of functional plant modules through the integration of complementary data sources.
    Heyndrickx KS; Vandepoele K
    Plant Physiol; 2012 Jul; 159(3):884-901. PubMed ID: 22589469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis.
    Shamloo-Dashtpagerdi R; Razi H; Aliakbari M; Lindlöf A; Ebrahimi M; Ebrahimie E
    J Theor Biol; 2015 Jan; 364():364-76. PubMed ID: 25303887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics.
    Vandepoele K; Casneuf T; Van de Peer Y
    Genome Biol; 2006; 7(11):R103. PubMed ID: 17090307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.
    Li H; Wang L; Yang ZM
    Gene; 2015 Jan; 554(1):16-24. PubMed ID: 25300251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene co-expression network analysis identifies trait-related modules in Arabidopsis thaliana.
    Liu W; Lin L; Zhang Z; Liu S; Gao K; Lv Y; Tao H; He H
    Planta; 2019 May; 249(5):1487-1501. PubMed ID: 30701323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine.
    Wong DCJ; Lopez Gutierrez R; Gambetta GA; Castellarin SD
    DNA Res; 2017 Jun; 24(3):311-326. PubMed ID: 28119334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic identification of cell-wall related genes in Populus based on analysis of functional modules in co-expression network.
    Cai B; Li CH; Huang J
    PLoS One; 2014; 9(4):e95176. PubMed ID: 24736620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.
    Corwin JA; Copeland D; Feusier J; Subedy A; Eshbaugh R; Palmer C; Maloof J; Kliebenstein DJ
    PLoS Genet; 2016 Feb; 12(2):e1005789. PubMed ID: 26866607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.