These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24888612)

  • 1. Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L.
    Colzi I; Rocchi S; Rangoni M; Del Bubba M; Gonnelli C
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10960-9. PubMed ID: 24888612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil.
    Pignattelli S; Colzi I; Buccianti A; Cecchi L; Arnetoli M; Monnanni R; Gabbrielli R; Gonnelli C
    J Hazard Mater; 2012 Aug; 227-228():362-9. PubMed ID: 22673060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxical effects of density on measurement of copper tolerance in Silene paradoxa L.
    Capuana M; Colzi I; Buccianti A; Coppi A; Palm E; Del Bubba M; Gonnelli C
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1331-1339. PubMed ID: 29086177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selected secondary metabolites in Echium vulgare L. populations from nonmetalliferous and metalliferous areas.
    Dresler S; Rutkowska E; Bednarek W; Stanisławski G; Kubrak T; Bogucka-Kocka A; Wójcik M
    Phytochemistry; 2017 Jan; 133():4-14. PubMed ID: 27855956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative responses to fungal attack on a metalliferous soil: Phytohormone levels and structural changes in Silene paradoxa L. growing under copper stress.
    Papini A; Luti S; Colzi I; Mazzoli L; Giorni E; Pazzagli L; Gonnelli C
    Plant Sci; 2019 Sep; 286():37-48. PubMed ID: 31300140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field.
    Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates.
    Quartacci MF; Irtelli B; Gonnelli C; Gabbrielli R; Navari-Izzo F
    Environ Pollut; 2009 Oct; 157(10):2697-703. PubMed ID: 19497650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level Zn and Cd tolerance in Silene paradoxa L. from a moderately Cd- and Zn-contaminated copper mine tailing.
    Arnetoli M; Vooijs R; Gonnelli C; Gabbrielli R; Verkleij JA; Schat H
    Environ Pollut; 2008 Nov; 156(2):380-6. PubMed ID: 18343003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of phytostabilization potential of two Salix L. clones based on the effects of heavy metals on the root anatomical traits.
    Hrkić Ilić Z; Pajević S; Borišev M; Luković J
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):29361-29383. PubMed ID: 32440877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent biology of facultative heavy metal plants.
    Bothe H; Słomka A
    J Plant Physiol; 2017 Dec; 219():45-61. PubMed ID: 29028613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations.
    Dresler S; Wójciak-Kosior M; Sowa I; Stanisławski G; Bany I; Wójcik M
    Plant Physiol Biochem; 2017 Jun; 115():380-389. PubMed ID: 28432977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Element accumulation, distribution, and phytoremediation potential in selected metallophytes growing in a contaminated area.
    Nadgórska-Socha A; Kandziora-Ciupa M; Ciepał R
    Environ Monit Assess; 2015 Jul; 187(7):441. PubMed ID: 26088758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.
    Lorestani B; Yousefi N; Cheraghi M; Farmany A
    Environ Monit Assess; 2013 Dec; 185(12):10217-23. PubMed ID: 23856813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury uptake by Silene vulgaris grown on contaminated spiked soils.
    Pérez-Sanz A; Millán R; Sierra MJ; Alarcón R; García P; Gil-Díaz M; Vazquez S; Lobo MC
    J Environ Manage; 2012 Mar; 95 Suppl():S233-7. PubMed ID: 20708330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils.
    Jeddi K; Chaieb M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36636-36644. PubMed ID: 30377962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic tolerance, uptake, and accumulation by nonmetallicolous and metallicolous populations of Pteris vittata L.
    Wu F; Deng D; Wu S; Lin X; Wong MH
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):8911-8. PubMed ID: 23494681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil.
    Mousavi Kouhi SM; Moudi M
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):10027-10038. PubMed ID: 31933083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities.
    García-Gonzalo P; Del Real AEP; Lobo MC; Pérez-Sanz A
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25713-25724. PubMed ID: 27151239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans.
    Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V
    Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.