These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 24888630)
1. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells. Ye X; Li L Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630 [TBL] [Abstract][Full Text] [Related]
3. Complementary workflow for global phosphoproteome analysis. Li QR; Ning ZB; Yang XL; Wu JR; Zeng R Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065 [TBL] [Abstract][Full Text] [Related]
4. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach. Hennrich ML; Groenewold V; Kops GJ; Heck AJ; Mohammed S Anal Chem; 2011 Sep; 83(18):7137-43. PubMed ID: 21815630 [TBL] [Abstract][Full Text] [Related]
5. Fractionation of phosphopeptides on strong anion-exchange capillary trap column for large-scale phosphoproteome analysis of microgram samples. Wang F; Han G; Yu Z; Jiang X; Sun S; Chen R; Ye M; Zou H J Sep Sci; 2010 Jul; 33(13):1879-87. PubMed ID: 20533337 [TBL] [Abstract][Full Text] [Related]
7. Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line. Chen D; Ludwig KR; Krokhin OV; Spicer V; Yang Z; Shen X; Hummon AB; Sun L Anal Chem; 2019 Feb; 91(3):2201-2208. PubMed ID: 30624053 [TBL] [Abstract][Full Text] [Related]
8. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET). Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634 [TBL] [Abstract][Full Text] [Related]
10. Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. Yu LR; Zhu Z; Chan KC; Issaq HJ; Dimitrov DS; Veenstra TD J Proteome Res; 2007 Nov; 6(11):4150-62. PubMed ID: 17924679 [TBL] [Abstract][Full Text] [Related]
11. Off-line two-dimensional liquid chromatography with maximized sample loading to reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry for shotgun proteome analysis. Wang N; Xie C; Young JB; Li L Anal Chem; 2009 Feb; 81(3):1049-60. PubMed ID: 19178338 [TBL] [Abstract][Full Text] [Related]
12. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome. Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695 [TBL] [Abstract][Full Text] [Related]
13. Mass Spectrometry-Based Proteomics for Analysis of Hydrophilic Phosphopeptides. Tsai CF; Smith JS; Eiger DS; Martin K; Liu T; Smith RD; Shi T; Rajagopal S; Jacobs JM Methods Mol Biol; 2021; 2259():247-257. PubMed ID: 33687720 [TBL] [Abstract][Full Text] [Related]
14. Tip-Based Fractionation of Batch-Enriched Phosphopeptides Facilitates Easy and Robust Phosphoproteome Analysis. Dehghani A; Gödderz M; Winter D J Proteome Res; 2018 Jan; 17(1):46-54. PubMed ID: 29083192 [TBL] [Abstract][Full Text] [Related]
15. Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Tsai CF; Smith JS; Krajewski K; Zhao R; Moghieb AM; Nicora CD; Xiong X; Moore RJ; Liu T; Smith RD; Jacobs JM; Rajagopal S; Shi T Anal Chem; 2019 Sep; 91(18):11606-11613. PubMed ID: 31418558 [TBL] [Abstract][Full Text] [Related]
16. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533 [TBL] [Abstract][Full Text] [Related]
17. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
18. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek's Disease Virus infection. Chien KY; Liu HC; Goshe MB J Proteome Res; 2011 Sep; 10(9):4041-53. PubMed ID: 21736374 [TBL] [Abstract][Full Text] [Related]
19. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139 [TBL] [Abstract][Full Text] [Related]
20. Capillary isoelectric focusing-tandem mass spectrometry and reversed-phase liquid chromatography-tandem mass spectrometry for quantitative proteomic analysis of differentiating PC12 cells by eight-plex isobaric tags for relative and absolute quantification. Zhu G; Sun L; Keithley RB; Dovichi NJ Anal Chem; 2013 Aug; 85(15):7221-9. PubMed ID: 23822771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]