These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24888699)

  • 1. Helical DNA origami tubular structures with various sizes and arrangements.
    Endo M; Yamamoto S; Emura T; Hidaka K; Morone N; Heuser JE; Sugiyama H
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7484-90. PubMed ID: 24888699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of chemically modified RNA origami nanostructures.
    Endo M; Takeuchi Y; Emura T; Hidaka K; Sugiyama H
    Chemistry; 2014 Nov; 20(47):15330-3. PubMed ID: 25313942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and self-folding of amphiphilic DNA origami.
    Zhou C; Wang D; Dong Y; Xin L; Sun Y; Yang Z; Liu D
    Small; 2015 Mar; 11(9-10):1161-4. PubMed ID: 25087844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.
    Ma Z; Huang Y; Park S; Kawai K; Kim DN; Hirai Y; Tsuchiya T; Yamada H; Tabata O
    Small; 2018 Jan; 14(1):. PubMed ID: 29131541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of ordered 3D tubes out of DNA origami lattices.
    Parikka JM; Järvinen H; Sokołowska K; Ruokolainen V; Markešević N; Natarajan AK; Vihinen-Ranta M; Kuzyk A; Tapio K; Toppari JJ
    Nanoscale; 2023 May; 15(17):7772-7780. PubMed ID: 37057647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA origami with complex curvatures in three-dimensional space.
    Han D; Pal S; Nangreave J; Deng Z; Liu Y; Yan H
    Science; 2011 Apr; 332(6027):342-6. PubMed ID: 21493857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy.
    Wang J; Wei Y; Zhang P; Wang Y; Xia Q; Liu X; Luo S; Shi J; Hu J; Fan C; Li B; Wang L; Zhou X; Li J
    Nano Lett; 2022 Sep; 22(17):7173-7179. PubMed ID: 35977401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal assembly of DNA origami structures using denaturing agents.
    Jungmann R; Liedl T; Sobey TL; Shih W; Simmel FC
    J Am Chem Soc; 2008 Aug; 130(31):10062-3. PubMed ID: 18613687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-assisted large-scale ordering of DNA origami tiles.
    Aghebat Rafat A; Pirzer T; Scheible MB; Kostina A; Simmel FC
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7665-8. PubMed ID: 24894973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming DNA tube circumferences.
    Yin P; Hariadi RF; Sahu S; Choi HM; Park SH; Labean TH; Reif JH
    Science; 2008 Aug; 321(5890):824-6. PubMed ID: 18687961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing tethered targets of a single biomolecular complex with atomic force microscopy.
    Wu N; Wang Q; Zhou X; Jia SS; Fan Y; Hu J; Li B
    J Mol Recognit; 2013 Dec; 26(12):700-4. PubMed ID: 24277616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing.
    Kopielski A; Schneider A; Csáki A; Fritzsche W
    Nanoscale; 2015 Feb; 7(5):2102-6. PubMed ID: 25558850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy.
    Zhang P; Wang F; Liu W; Mao X; Hao C; Zhang Y; Fan C; Hu J; Wang L; Li B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21973-21981. PubMed ID: 31117423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist.
    Jiang C; Lu B; Zhang W; Ohayon YP; Feng F; Li S; Seeman NC; Xiao SJ
    J Am Chem Soc; 2022 Apr; 144(15):6759-6769. PubMed ID: 35385657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-templated DNA origami structures.
    Endo M; Yamamoto S; Tatsumi K; Emura T; Hidaka K; Sugiyama H
    Chem Commun (Camb); 2013 Apr; 49(28):2879-81. PubMed ID: 23446278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed folding of DNA origami structures through single-molecule force control.
    Bae W; Kim K; Min D; Ryu JK; Hyeon C; Yoon TY
    Nat Commun; 2014 Dec; 5():5654. PubMed ID: 25469474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct visualization of transient thermal response of a DNA origami.
    Song J; Arbona JM; Zhang Z; Liu L; Xie E; Elezgaray J; Aime JP; Gothelf KV; Besenbacher F; Dong M
    J Am Chem Soc; 2012 Jun; 134(24):9844-7. PubMed ID: 22646845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.