These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24888756)
1. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Karimi A; Navidbakhsh M; Yamada H; Razaghi R Med Biol Eng Comput; 2014 Jul; 52(7):589-99. PubMed ID: 24888756 [TBL] [Abstract][Full Text] [Related]
2. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury. Karimi A; Razaghi R; Shojaei A; Navidbakhsh M Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956 [TBL] [Abstract][Full Text] [Related]
3. Patient-specific Finite Element Model of Coronary Artery Stenting. Razaghi R; Karimi A; Taheri RA Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186 [TBL] [Abstract][Full Text] [Related]
4. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Pericevic I; Lally C; Toner D; Kelly DJ Med Eng Phys; 2009 May; 31(4):428-33. PubMed ID: 19129001 [TBL] [Abstract][Full Text] [Related]
5. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation. Schiavone A; Zhao LG; Abdel-Wahab AA Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145 [TBL] [Abstract][Full Text] [Related]
6. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. Timmins LH; Meyer CA; Moreno MR; Moore JE J Endovasc Ther; 2008 Dec; 15(6):643-54. PubMed ID: 19090628 [TBL] [Abstract][Full Text] [Related]
7. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501 [TBL] [Abstract][Full Text] [Related]
8. Interaction of a self-expandable stent with the arterial wall in the presence of hypocellular and calcified plaques. Allum Saib Z; Abed F; Ghayesh MH; Amabili M Biomech Model Mechanobiol; 2024 Oct; ():. PubMed ID: 39369168 [TBL] [Abstract][Full Text] [Related]
9. Influences of plaque eccentricity and composition on the stent-plaque-artery interaction during stent implantation. Wei L; Chen Q; Li Z Biomech Model Mechanobiol; 2019 Feb; 18(1):45-56. PubMed ID: 30097815 [TBL] [Abstract][Full Text] [Related]
10. Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Gökgöl C; Diehm N; Büchler P Ann Biomed Eng; 2017 Jun; 45(6):1420-1433. PubMed ID: 28150055 [TBL] [Abstract][Full Text] [Related]
11. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Liang DK; Yang DZ; Qi M; Wang WQ Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062 [TBL] [Abstract][Full Text] [Related]
12. Discordance of the areas of peak wall shear stress and tissue stress in coronary artery plaques as revealed by fluid-structure interaction finite element analysis: a case study. Asanuma T; Higashikuni Y; Yamashita H; Nagai R; Hisada T; Sugiura S Int Heart J; 2013; 54(1):54-8. PubMed ID: 23428927 [TBL] [Abstract][Full Text] [Related]
13. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. Morlacchi S; Pennati G; Petrini L; Dubini G; Migliavacca F J Biomech; 2014 Mar; 47(4):899-907. PubMed ID: 24468208 [TBL] [Abstract][Full Text] [Related]
14. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer. Syaifudin A; Ariatedja JB; Kaelani Y; Takeda R; Sasaki K Biomed Mater Eng; 2019; 30(3):309-322. PubMed ID: 31127751 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis. Welch TR; Eberhart RC; Banerjee S; Chuong CJ Cardiovasc Eng Technol; 2016 Mar; 7(1):58-68. PubMed ID: 26621671 [TBL] [Abstract][Full Text] [Related]
16. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation. He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F Biomech Model Mechanobiol; 2020 Feb; 19(1):47-60. PubMed ID: 31317295 [TBL] [Abstract][Full Text] [Related]
17. Effect of longitudinal anatomical mismatch of stenting on the mechanical environment in human carotid artery with atherosclerotic plaques. Fan Z; Liu X; Sun A; Zhang N; Fan Z; Fan Y; Deng X Med Eng Phys; 2017 Oct; 48():114-119. PubMed ID: 28826570 [TBL] [Abstract][Full Text] [Related]
18. Two-layer model of coronary artery vasoactivity. Huo Y; Zhao X; Cheng Y; Lu X; Kassab GS J Appl Physiol (1985); 2013 May; 114(10):1451-9. PubMed ID: 23471951 [TBL] [Abstract][Full Text] [Related]
19. The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. Iannaccone F; Debusschere N; De Bock S; De Beule M; Van Loo D; Vermassen F; Segers P; Verhegghe B J Biomech; 2014 Mar; 47(4):890-8. PubMed ID: 24480704 [TBL] [Abstract][Full Text] [Related]
20. Stent design favorably influences the vascular response in normal porcine coronary arteries. Carter AJ; Scott D; Rahdert D; Bailey L; De Vries J ; Ayerdi K; Turnlund T; Jones R; Virmani R; Fischell TA J Invasive Cardiol; 1999 Mar; 11(3):127-34. PubMed ID: 10745499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]