These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 24889029)

  • 1. Self-assembly of azide containing dipeptides.
    Yuran S; Razvag Y; Das P; Reches M
    J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of ordered biomolecular structures by the self-assembly of short peptides.
    Yuran S; Reches M
    J Vis Exp; 2013 Nov; (81):e50946. PubMed ID: 24301009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,1,1,3,3,3-Hexafluoro-2-propanol and 2,2,2-trifluoroethanol solvents induce self-assembly with different surface morphology in an aromatic dipeptide.
    Reddy SM; Shanmugam G; Mandal AB
    Org Biomol Chem; 2014 Aug; 12(32):6181-9. PubMed ID: 24999600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.
    Subbalakshmi C; Manorama SV; Nagaraj R
    J Pept Sci; 2012 May; 18(5):283-92. PubMed ID: 22431418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coassembly of aromatic dipeptides into biomolecular necklaces.
    Yuran S; Razvag Y; Reches M
    ACS Nano; 2012 Nov; 6(11):9559-66. PubMed ID: 23061818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-induced self-assembly of dipeptides onto nanotextured surfaces.
    Demirel G; Buyukserin F
    Langmuir; 2011 Oct; 27(20):12533-8. PubMed ID: 21879773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-assembly of aromatic dipeptides into spherical structures that are similar in morphology to red and white blood cells.
    Maity S; Nir S; Reches M
    J Mater Chem B; 2014 May; 2(17):2583-2591. PubMed ID: 32261425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanovesicles based on self-assembly of conformationally constrained aromatic residue containing amphiphilic dipeptides.
    Mishra A; Panda JJ; Basu A; Chauhan VS
    Langmuir; 2008 May; 24(9):4571-6. PubMed ID: 18358051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological Versatility in the Self-Assembly of Val-Ala and Ala-Val Dipeptides.
    Erdogan H; Babur E; Yilmaz M; Candas E; Gordesel M; Dede Y; Oren EE; Demirel GB; Ozturk MK; Yavuz MS; Demirel G
    Langmuir; 2015 Jul; 31(26):7337-45. PubMed ID: 26086903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical organization of ferrocene-peptides.
    Beheshti S; Martić S; Kraatz HB
    Chemistry; 2012 Jul; 18(29):9099-105. PubMed ID: 22707407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity and translocation relationships via hPEPT1 of H-X aa-Ser-OH dipeptides: evaluation of H-Phe-Ser-OH as a pro-moiety for ibuprofen and benzoic acid prodrugs.
    Omkvist DH; Trangbæk DJ; Mildon J; Paine JS; Brodin B; Begtrup M; Nielsen CU
    Eur J Pharm Biopharm; 2011 Feb; 77(2):327-31. PubMed ID: 21147219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational de novo design of a self-assembling peptide with predefined structure.
    Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I
    J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of protein aggregation by amphiphilic peptides: transformation of supramolecular structure of the aggregates.
    Artemova NV; Stein-Margolina VA; Bumagina ZM; Gurvits BY
    Biotechnol Prog; 2011; 27(3):846-54. PubMed ID: 21365787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of macroporous self-assembled hydrogels through cryogelation of Fmoc-Phe-Phe.
    Berillo D; Mattiasson B; Galaev IY; Kirsebom H
    J Colloid Interface Sci; 2012 Feb; 368(1):226-30. PubMed ID: 22129632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Casting metal nanowires within discrete self-assembled peptide nanotubes.
    Reches M; Gazit E
    Science; 2003 Apr; 300(5619):625-7. PubMed ID: 12714741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printing of Self-Assembled Dipeptides.
    Yang J; Chen M; Lee H; Xu Z; Zhou Z; Feng SP; Kim JT
    ACS Appl Mater Interfaces; 2021 May; 13(17):20573-20580. PubMed ID: 33896166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.