BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24889195)

  • 1. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins.
    Bigeard J; Rayapuram N; Pflieger D; Hirt H
    Proteomics; 2014 Oct; 14(19):2127-40. PubMed ID: 24889195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana.
    Bigeard J; Rayapuram N; Bonhomme L; Hirt H; Pflieger D
    Proteomics; 2014 Oct; 14(19):2141-55. PubMed ID: 24889360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of nuclear proteins.
    Calikowski TT; Meier I
    Methods Mol Biol; 2006; 323():393-402. PubMed ID: 16739594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress.
    Vialaret J; Di Pietro M; Hem S; Maurel C; Rossignol M; Santoni V
    Proteomics; 2014 May; 14(9):1058-70. PubMed ID: 24616185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics in Arabidopsis: moving from empirical to predictive science.
    Peck SC
    J Exp Bot; 2006; 57(7):1523-7. PubMed ID: 16531460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus.
    Launholt D; Merkle T; Houben A; Schulz A; Grasser KD
    Plant Cell; 2006 Nov; 18(11):2904-18. PubMed ID: 17114349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis.
    de la Fuente van Bentem S; Anrather D; Dohnal I; Roitinger E; Csaszar E; Joore J; Buijnink J; Carreri A; Forzani C; Lorkovic ZJ; Barta A; Lecourieux D; Verhounig A; Jonak C; Hirt H
    J Proteome Res; 2008 Jun; 7(6):2458-70. PubMed ID: 18433157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel subsets of the Arabidopsis plasmalemma phosphoproteome identify phosphorylation sites in secondary active transporters.
    Hem S; Rofidal V; Sommerer N; Rossignol M
    Biochem Biophys Res Commun; 2007 Nov; 363(2):375-80. PubMed ID: 17869214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development.
    Zhu Y; Weng M; Yang Y; Zhang C; Li Z; Shen WH; Dong A
    Plant J; 2011 May; 66(3):443-55. PubMed ID: 21251110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain.
    Tweedie-Cullen RY; Reck JM; Mansuy IM
    J Proteome Res; 2009 Nov; 8(11):4966-82. PubMed ID: 19737024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of chromatin regulation on the floral transition.
    Farrona S; Coupland G; Turck F
    Semin Cell Dev Biol; 2008 Dec; 19(6):560-73. PubMed ID: 18708152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.
    Aryal UK; Krochko JE; Ross AR
    J Proteome Res; 2012 Jan; 11(1):425-37. PubMed ID: 22092075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CK2-defective Arabidopsis plants exhibit enhanced double-strand break repair rates and reduced survival after exposure to ionizing radiation.
    Moreno-Romero J; Armengot L; Mar Marquès-Bueno M; Britt A; Carmen Martínez M
    Plant J; 2012 Aug; 71(4):627-38. PubMed ID: 22487192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses.
    Wang X; Bian Y; Cheng K; Zou H; Sun SS; He JX
    J Proteome Res; 2012 Apr; 11(4):2301-15. PubMed ID: 22329444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16.
    Ingelsson B; Vener AV
    FEBS Lett; 2012 May; 586(9):1265-71. PubMed ID: 22616989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis.
    Lildballe DL; Pedersen DS; Kalamajka R; Emmersen J; Houben A; Grasser KD
    J Mol Biol; 2008 Dec; 384(1):9-21. PubMed ID: 18822296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana.
    Barrero JM; González-Bayón R; del Pozo JC; Ponce MR; Micol JL
    Plant Cell; 2007 Sep; 19(9):2822-38. PubMed ID: 17873092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphorylation and photorespiration.
    Hodges M; Jossier M; Boex-Fontvieille E; Tcherkez G
    Plant Biol (Stuttg); 2013 Jul; 15(4):694-706. PubMed ID: 23506267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana.
    Jones AM; MacLean D; Studholme DJ; Serna-Sanz A; Andreasson E; Rathjen JP; Peck SC
    J Proteomics; 2009 Apr; 72(3):439-51. PubMed ID: 19245862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.