BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24889259)

  • 1. Poloxamine/fibrin hybrid hydrogels for non-viral gene delivery.
    Zhang J; Sen A; Cho E; Lee JS; Webb K
    J Tissue Eng Regen Med; 2017 Jan; 11(1):246-255. PubMed ID: 24889259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy and mechanism of poloxamine-assisted polyplex transfection.
    Zhang J; Bae S; Lee JS; Webb K
    J Gene Med; 2013; 15(8-9):271-81. PubMed ID: 23813893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of fibrin-gelatin hydrogel as biopaper for application in skin bioprinting: An in-vitro study.
    Hakam MS; Imani R; Abolfathi N; Fakhrzadeh H; Sharifi AM
    Biomed Mater Eng; 2016; 27(6):669-682. PubMed ID: 28234249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrin hydrogels for non-viral vector delivery in vitro.
    des Rieux A; Shikanov A; Shea LD
    J Control Release; 2009 Jun; 136(2):148-54. PubMed ID: 19232532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and characterization of poloxamine-based hydrogels as tissue sealants.
    Cho E; Lee JS; Webb K
    Acta Biomater; 2012 Jul; 8(6):2223-32. PubMed ID: 22406506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chondrogenic differentiation of human ASCs by stiffness control in 3D fibrin hydrogel.
    Kim JS; Kim TH; Kang DL; Baek SY; Lee Y; Koh YG; Kim YI
    Biochem Biophys Res Commun; 2020 Jan; 522(1):213-219. PubMed ID: 31759627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
    Wieland JA; Houchin-Ray TL; Shea LD
    J Control Release; 2007 Jul; 120(3):233-41. PubMed ID: 17582640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering.
    Lee F; Kurisawa M
    Acta Biomater; 2013 Feb; 9(2):5143-52. PubMed ID: 22943886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing salinity of fibrinogen solvent generates stable fibrin hydrogels for cell delivery or tissue engineering.
    Jarrell DK; Vanderslice EJ; Lennon ML; Lyons AC; VeDepo MC; Jacot JG
    PLoS One; 2021; 16(5):e0239242. PubMed ID: 34010323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of fibrin gel scaffolds containing MWCNT/PU nanofibers for neural tissue engineering.
    Hasanzadeh E; Ebrahimi-Barough S; Mirzaei E; Azami M; Tavangar SM; Mahmoodi N; Basiri A; Ai J
    J Biomed Mater Res A; 2019 Apr; 107(4):802-814. PubMed ID: 30578713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications.
    Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA
    Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer.
    Truong NF; Kurt E; Tahmizyan N; Lesher-Pérez SC; Chen M; Darling NJ; Xi W; Segura T
    Acta Biomater; 2019 Aug; 94():160-172. PubMed ID: 31154058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering.
    Ziv-Polat O; Skaat H; Shahar A; Margel S
    Int J Nanomedicine; 2012; 7():1259-74. PubMed ID: 22419873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.
    Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F
    Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FITC-Dextran Release from Cell-Embedded Fibrin Hydrogels.
    Lepsky VR; Natan S; Tchaicheeyan O; Kolel A; Zussman M; Zilberman M; Lesman A
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-viral DNA delivery from porous hyaluronic acid hydrogels in mice.
    Tokatlian T; Cam C; Segura T
    Biomaterials; 2014 Jan; 35(2):825-35. PubMed ID: 24210142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal release of transforming growth factor-β1 and the BB isoform of platelet derived growth factor from PEGylated fibrin gels.
    Drinnan CT; Zhang G; Alexander MA; Pulido AS; Suggs LJ
    J Control Release; 2010 Oct; 147(2):180-6. PubMed ID: 20381553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications.
    Velasco-Rodriguez B; Diaz-Vidal T; Rosales-Rivera LC; García-González CA; Alvarez-Lorenzo C; Al-Modlej A; Domínguez-Arca V; Prieto G; Barbosa S; Soltero Martínez JFA; Taboada P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.