These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24889278)

  • 1. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate.
    Ren L; Zhang X; He W; Logan BE
    Biotechnol Bioeng; 2014 Nov; 111(11):2163-9. PubMed ID: 24889278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage.
    Catal T; Cysneiros D; O'Flaherty V; Leech D
    Bioresour Technol; 2011 Jan; 102(1):404-10. PubMed ID: 20667712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors.
    Shehab N; Li D; Amy GL; Logan BE; Saikaly PE
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9885-95. PubMed ID: 23775270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COD removal characteristics in air-cathode microbial fuel cells.
    Zhang X; He W; Ren L; Stager J; Evans PJ; Logan BE
    Bioresour Technol; 2015 Jan; 176():23-31. PubMed ID: 25460980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas.
    Yan H; Regan JM
    Biotechnol Bioeng; 2013 Mar; 110(3):785-91. PubMed ID: 23097182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.
    Mateo S; Gonzalez Del Campo A; Lobato J; Rodrigo M; Cañizares P; Fernandez-Morales FJ
    Biotechnol Prog; 2016 Jul; 32(4):883-90. PubMed ID: 27072066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].
    Ye YJ; Song TS; Xu Y; Chen YW; Zhu SM; Shen SB
    Huan Jing Ke Xue; 2009 Apr; 30(4):1221-6. PubMed ID: 19545033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2241-8. PubMed ID: 22314518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of denitrifying microbial fuel cell subjected to variation in pH, COD concentration and external resistance.
    Li JT; Zhang SH; Hua YM
    Water Sci Technol; 2013; 68(1):250-6. PubMed ID: 23823562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells.
    Yang F; Ren L; Pu Y; Logan BE
    Bioresour Technol; 2013 Jan; 128():784-7. PubMed ID: 23186679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells.
    Juang DF; Yang PC; Chou HY; Chiu LJ
    Biotechnol Lett; 2011 Nov; 33(11):2147-60. PubMed ID: 21750995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor.
    Sun G; Kang K; Qiu L; Guo X; Zhu M
    Bioelectrochemistry; 2019 Apr; 126():12-19. PubMed ID: 30472567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment.
    Yu J; Seon J; Park Y; Cho S; Lee T
    Bioresour Technol; 2012 Aug; 117():172-9. PubMed ID: 22613893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of exoelectrogens and electron acceptors on the performance of microbial fuel cells].
    Li FX; Zhou QX; Li BK
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):3070-4. PubMed ID: 20353079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):349-55. PubMed ID: 18542943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.