These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24889356)

  • 1. Extension of accompanying coordinate expansion and recurrence relation method for general-contraction basis sets.
    Hayami M; Seino J; Nakai H
    J Comput Chem; 2014 Jul; 35(20):1517-27. PubMed ID: 24889356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions.
    Hayami M; Seino J; Nakai H
    J Chem Phys; 2015 May; 142(20):204110. PubMed ID: 26026437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New recurrence relations for the rapid evaluation of electron repulsion integrals based on the accompanying coordinate expansion formula.
    Kobayashi M; Nakai H
    J Chem Phys; 2004 Sep; 121(9):4050-8. PubMed ID: 15332950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accompanying coordinate expansion formulas derived with the solid harmonic gradient.
    Ishida K
    J Comput Chem; 2002 Feb; 23(3):378-93. PubMed ID: 11908501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. libreta: Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation.
    Zhang J
    J Chem Theory Comput; 2018 Feb; 14(2):572-587. PubMed ID: 29241013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Calculation of Molecular Integrals over London Atomic Orbitals.
    Irons TJP; Zemen J; Teale AM
    J Chem Theory Comput; 2017 Aug; 13(8):3636-3649. PubMed ID: 28692291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation.
    Ufimtsev IS; Martínez TJ
    J Chem Theory Comput; 2008 Feb; 4(2):222-31. PubMed ID: 26620654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of the GAMESS-UK electronic structure package on graphical processing units.
    Wilkinson KA; Sherwood P; Guest MF; Naidoo KJ
    J Comput Chem; 2011 Jul; 32(10):2313-8. PubMed ID: 21541963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contracted basis sets for density functional calculations: segmented versus general contraction.
    Jensen F
    J Chem Phys; 2005 Feb; 122(7):074111. PubMed ID: 15743225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals.
    Zhang T; Liu X; Valeev EF; Li X
    J Phys Chem A; 2021 May; 125(19):4258-4265. PubMed ID: 33970626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations.
    Miao Y; Merz KM
    J Chem Theory Comput; 2013 Feb; 9(2):965-76. PubMed ID: 26588740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized basis orbitals: minimization of 2-electron integrals array and orthonormality of basis set.
    Anikin NA; Bugaenko VL; Frash MV; Gorb L; Leszczynski J
    J Comput Chem; 2003 Jul; 24(9):1132-41. PubMed ID: 12759912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbitrary Angular Momentum Electron Repulsion Integrals with Graphical Processing Units: Application to the Resolution of Identity Hartree-Fock Method.
    Kalinowski J; Wennmohs F; Neese F
    J Chem Theory Comput; 2017 Jul; 13(7):3160-3170. PubMed ID: 28605592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions.
    Sandberg JA; Rinkevicius Z
    J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular integrals over the gauge-including atomic orbitals. II. The Breit-Pauli interaction.
    Ishida K
    J Comput Chem; 2003 Nov; 24(15):1874-90. PubMed ID: 14515370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing two-electron repulsion integral calculations with McMurchie-Davidson method on graphic processing unit.
    Tian Y; Suo B; Ma Y; Jin Z
    J Chem Phys; 2021 Jul; 155(3):034112. PubMed ID: 34293888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions.
    Komornicki A; King HF
    J Chem Phys; 2011 Jun; 134(24):244115. PubMed ID: 21721620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.
    Shiozaki T
    J Chem Phys; 2013 Mar; 138(11):111101. PubMed ID: 23534619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction of completeness-optimized basis sets: application to ground-state electron momentum densities.
    Lehtola S; Manninen P; Hakala M; Hämäläinen K
    J Chem Phys; 2013 Jan; 138(4):044109. PubMed ID: 23387570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.