These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 24889422)
1. Investigating muscle regeneration with a dermis/small intestinal submucosa scaffold in a rat full-thickness abdominal wall defect model. Ma J; Sahoo S; Baker AR; Derwin KA J Biomed Mater Res B Appl Biomater; 2015 Feb; 103(2):355-64. PubMed ID: 24889422 [TBL] [Abstract][Full Text] [Related]
2. The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model. Zhang J; Wang GY; Xiao YP; Fan LY; Wang Q Biomaterials; 2011 Oct; 32(29):7086-95. PubMed ID: 21741703 [TBL] [Abstract][Full Text] [Related]
3. Use of small intestinal submucosal and acellular dermal matrix grafts in giant omphaloceles in neonates and a rabbit abdominal wall defect model. Jiang W; Zhang J; Lv X; Lu C; Chen H; Xu X; Tang W J Pediatr Surg; 2016 Mar; 51(3):368-73. PubMed ID: 26364879 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of abdominal wall musculofascial defects with small intestinal submucosa scaffolds seeded with tenocytes in rats. Song Z; Peng Z; Liu Z; Yang J; Tang R; Gu Y Tissue Eng Part A; 2013 Jul; 19(13-14):1543-53. PubMed ID: 23402600 [TBL] [Abstract][Full Text] [Related]
5. Small intestinal submucosa in abdominal wall repair after TRAM flap harvesting in a rat model. Zhang F; Zhang J; Lin S; Oswald T; Sones W; Cai Z; Dorsett-Martin W; Lineaweaver WC Plast Reconstr Surg; 2003 Aug; 112(2):565-70. PubMed ID: 12900615 [TBL] [Abstract][Full Text] [Related]
6. The use of bi-layer silk fibroin scaffolds and small intestinal submucosa matrices to support bladder tissue regeneration in a rat model of spinal cord injury. Chung YG; Algarrahi K; Franck D; Tu DD; Adam RM; Kaplan DL; Estrada CR; Mauney JR Biomaterials; 2014 Aug; 35(26):7452-9. PubMed ID: 24917031 [TBL] [Abstract][Full Text] [Related]
7. Tensile strength comparison of small intestinal submucosa body wall repair. Ko R; Kazacos EA; Snyder S; Ernst DM; Lantz GC J Surg Res; 2006 Sep; 135(1):9-17. PubMed ID: 16650864 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. Cao G; Wang C; Fan Y; Li X Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110538. PubMed ID: 32228945 [TBL] [Abstract][Full Text] [Related]
9. Chronic hernia repair in a rat model using small intestinal submucosa. Steurer JA; Lantz GC; Kazacos EA; Saunders AT; Altizer AM J Invest Surg; 2011; 24(5):227-35. PubMed ID: 21867393 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a canine small intestinal submucosal xenograft and polypropylene mesh as bioscaffolds in an abdominal full-thickness resection model of growing rats. Lee AJ; Lee SH; Chung WH; Kim DH; Chung DJ; Do SH; Kim HY J Vet Sci; 2013; 14(2):175-84. PubMed ID: 23628657 [TBL] [Abstract][Full Text] [Related]
11. Immunomodulatory response of layered small intestinal submucosa in a rat bladder regeneration model. Xia D; Yang Q; Fung KM; Towner RA; Smith N; Saunders D; Greenwood-Van Meerveld B; Kropp BP; Madihally SV; Lin HK J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1960-1969. PubMed ID: 30521124 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two porcine-derived materials for repairing abdominal wall defects in rats. Liu Z; Tang R; Zhou Z; Song Z; Wang H; Gu Y PLoS One; 2011; 6(5):e20520. PubMed ID: 21637777 [TBL] [Abstract][Full Text] [Related]
13. Li MT; Ruehle MA; Stevens HY; Servies N; Willett NJ; Karthikeyakannan S; Warren GL; Guldberg RE; Krishnan L Tissue Eng Part A; 2017 Sep; 23(17-18):989-1000. PubMed ID: 28372522 [TBL] [Abstract][Full Text] [Related]
14. Bupivacaine-enhanced small intestinal submucosa biomaterial as a hernia repair device. Suckow MA; Wolter WR; Fecteau C; Labadie-Suckow SM; Johnson C J Biomater Appl; 2012 Aug; 27(2):231-7. PubMed ID: 21680611 [TBL] [Abstract][Full Text] [Related]
15. Human NELL1 protein augments constructive tissue remodeling with biologic scaffolds. Turner NJ; Londono R; Dearth CL; Culiat CT; Badylak SF Cells Tissues Organs; 2013; 198(4):249-65. PubMed ID: 24335144 [TBL] [Abstract][Full Text] [Related]
16. Perfusion-decellularized skeletal muscle as a three-dimensional scaffold with a vascular network template. Zhang J; Hu ZQ; Turner NJ; Teng SF; Cheng WY; Zhou HY; Zhang L; Hu HW; Wang Q; Badylak SF Biomaterials; 2016 May; 89():114-26. PubMed ID: 26963901 [TBL] [Abstract][Full Text] [Related]
17. Decellularized extracellular matrix repair of volumetric muscle loss injury impairs adjacent bone healing in a rat model of complex musculoskeletal trauma. Pollot BE; Goldman SM; Wenke JC; Corona BT J Trauma Acute Care Surg; 2016 Nov; 81(5 Suppl 2 Proceedings of the 2015 Military Health System Research Symposium):S184-S190. PubMed ID: 27533905 [TBL] [Abstract][Full Text] [Related]
18. Host tissue integration process in abdominal wall defect repair: a comparison of two porcine-derived grafts in a long-term study. Liu Z; Yang Z; Zhou Z; Song Z; Wang H; Yang J; Tang R; Tan Q; Gu Y Expert Opin Biol Ther; 2014 Jul; 14(7):883-92. PubMed ID: 24707915 [TBL] [Abstract][Full Text] [Related]
19. [Elementary evaluation of small intestinal submucosa and polypropylene mesh used for repairing abdominal wall defect in rats]. Zhang X; Luo J; Yang Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jul; 19(7):574-7. PubMed ID: 16108349 [TBL] [Abstract][Full Text] [Related]
20. Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Klinger A; Kawata M; Villalobos M; Jones RB; Pike S; Wu N; Chang S; Zhang P; DiMuzio P; Vernengo J; Benvenuto P; Goldfarb RD; Hunter K; Liu Y; Carpenter JP; Tulenko TN Hernia; 2016 Feb; 20(1):161-70. PubMed ID: 26545361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]