BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24889497)

  • 1. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos.
    Coimbra JP; Collin SP; Hart NS
    J Comp Neurol; 2014 Oct; 522(15):3363-85. PubMed ID: 24889497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topographic specializations in the retinal ganglion cell layer of Australian passerines.
    Coimbra JP; Collin SP; Hart NS
    J Comp Neurol; 2014 Nov; 522(16):3609-28. PubMed ID: 24825607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal ganglion cell topography and spatial resolving power in African megachiropterans: Influence of roosting microhabitat and foraging.
    Coimbra JP; Pettigrew JD; Kaswera-Kyamakya C; Gilissen E; Collin SP; Manger PR
    J Comp Neurol; 2017 Jan; 525(1):186-203. PubMed ID: 27277932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual topographic specializations of retinal ganglion cell density and spatial resolution in a cliff-dwelling artiodactyl, the Nubian ibex (Capra nubiana).
    Coimbra JP; Alagaili AN; Bennett NC; Mohammed OB; Manger PR
    J Comp Neurol; 2019 Dec; 527(17):2813-2825. PubMed ID: 31045240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis).
    Coimbra JP; Hart NS; Collin SP; Manger PR
    J Comp Neurol; 2013 Jun; 521(9):2042-57. PubMed ID: 23595815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retina of tyrant flycatchers: topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty margined flycatcher Myiozetetes cayanensis (Aves: Tyrannidae).
    Coimbra JP; Marceliano ML; Andrade-da-Costa BL; Yamada ES
    Brain Behav Evol; 2006; 68(1):15-25. PubMed ID: 16567928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubular eyes of deep-sea fishes: a comparative study of retinal topography.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1997; 50(6):335-57. PubMed ID: 9406644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius).
    Coimbra JP; Bertelsen MF; Manger PR
    J Comp Neurol; 2017 Aug; 525(11):2499-2513. PubMed ID: 28139828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum).
    Coimbra JP; Manger PR
    J Comp Neurol; 2017 Aug; 525(11):2484-2498. PubMed ID: 27804143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal ganglion cell topography and spatial resolving power in penguins.
    Coimbra JP; Nolan PM; Collin SP; Hart NS
    Brain Behav Evol; 2012; 80(4):254-68. PubMed ID: 23038153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in retinal photoreceptor topography and the organization of the rod-free zone reflect behavioral diversity in Australian passerines.
    Coimbra JP; Collin SP; Hart NS
    J Comp Neurol; 2015 May; 523(7):1073-94. PubMed ID: 25424531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal ganglion cell distribution and spatial resolving power in deep-sea lanternfishes (Myctophidae).
    de Busserolles F; Marshall NJ; Collin SP
    Brain Behav Evol; 2014; 84(4):262-76. PubMed ID: 25401391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Number and distribution of neurons in the retinal ganglion cell layer in relation to foraging behaviors of tyrant flycatchers.
    Coimbra JP; Trévia N; Marceliano ML; da Silveira Andrade-Da-Costa BL; Picanço-Diniz CW; Yamada ES
    J Comp Neurol; 2009 May; 514(1):66-73. PubMed ID: 19260061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal Ganglion Cell Topography and Retinal Resolution in the Baikal Seal (Pusa sibirica).
    Mass AM; Supin AY
    Brain Behav Evol; 2016; 88(1):59-67. PubMed ID: 27529170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.
    Lisney TJ; Collin SP
    Brain Behav Evol; 2008; 72(1):59-77. PubMed ID: 18679025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye growth in sharks: ecological implications for changes in retinal topography and visual resolution.
    Litherland L; Collin SP; Fritsches KA
    Vis Neurosci; 2009; 26(4):397-409. PubMed ID: 19698193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Topographic Organization of Retinal Ganglion Cell Density and Spatial Resolving Power in an Unusual Arboreal and Slow-Moving Strepsirhine Primate, the Potto (Perodicticus potto).
    Coimbra JP; Kaswera-Kyamakya C; Gilissen E; Manger PR; Collin SP
    Brain Behav Evol; 2016; 87(1):4-18. PubMed ID: 26820506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The visual system of a palaeognathous bird: visual field, retinal topography and retino-central connections in the Chilean tinamou (Nothoprocta perdicaria).
    Krabichler Q; Vega-Zuniga T; Morales C; Luksch H; Marín GJ
    J Comp Neurol; 2015 Feb; 523(2):226-50. PubMed ID: 25224833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.