These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24889548)

  • 1. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.
    Žnidarčič A; Mettin R; Dular M
    Ultrason Sonochem; 2015 Jan; 22():482-92. PubMed ID: 24889548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical 3D flow simulation of ultrasonic horns with attached cavitation structures and assessment of flow aggressiveness and cavitation erosion sensitive wall zones.
    Mottyll S; Skoda R
    Ultrason Sonochem; 2016 Jul; 31():570-89. PubMed ID: 26964985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cavitation under ultrasonic horn tip - Proposition of an acoustic cavitation parameter.
    Kozmus G; Zevnik J; Hočevar M; Dular M; Petkovšek M
    Ultrason Sonochem; 2022 Sep; 89():106159. PubMed ID: 36099775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-contact method for analysis of cavitating flows.
    Biluš I; Bizjan B; Lešnik L; Širok B; Pečnik B; Dular M
    Ultrasonics; 2017 Nov; 81():178-186. PubMed ID: 28711033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsteady translation and repetitive jetting of acoustic cavitation bubbles.
    Nowak T; Mettin R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033016. PubMed ID: 25314538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D flow simulations and pressure measurements for the evaluation of cavitation dynamics and flow aggressiveness in ultrasonic erosion devices with varying gap widths.
    Schreiner F; Paepenmöller S; Skoda R
    Ultrason Sonochem; 2020 Oct; 67():105091. PubMed ID: 32361676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic cavitation for sonochemical effects.
    Moholkar VS; Kumar PS; Pandit AB
    Ultrason Sonochem; 1999 Mar; 6(1-2):53-65. PubMed ID: 11233938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.
    Johnston K; Tapia-Siles C; Gerold B; Postema M; Cochran S; Cuschieri A; Prentice P
    Ultrasonics; 2014 Dec; 54(8):2151-8. PubMed ID: 25015000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cavitation in liposome formation.
    Richardson ES; Pitt WG; Woodbury DJ
    Biophys J; 2007 Dec; 93(12):4100-7. PubMed ID: 17766335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFD study of the flow pattern in an ultrasonic horn reactor: Introducing a realistic vibrating boundary condition.
    Rahimi M; Movahedirad S; Shahhosseini S
    Ultrason Sonochem; 2017 Mar; 35(Pt A):359-374. PubMed ID: 27771264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterising the cavitation activity generated by an ultrasonic horn at varying tip-vibration amplitudes.
    Yusuf L; Symes MD; Prentice P
    Ultrason Sonochem; 2021 Jan; 70():105273. PubMed ID: 32795929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Gilmore-NASG model to predict single-bubble cavitation in compressible liquids.
    Denner F
    Ultrason Sonochem; 2021 Jan; 70():105307. PubMed ID: 32866881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems.
    Ferrari A
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160345. PubMed ID: 28413332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip.
    Birkin PR; Offin DG; Vian CJ; Leighton TG
    J Acoust Soc Am; 2011 Nov; 130(5):3379-88. PubMed ID: 22088011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation dynamics in water at elevated temperatures and in liquid nitrogen at an ultrasonic horn tip.
    Petkovšek M; Dular M
    Ultrason Sonochem; 2019 Nov; 58():104652. PubMed ID: 31450287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels.
    Zeqiri B; Hodnett M; Carroll AJ
    Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.