BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

4622 related articles for article (PubMed ID: 24889800)

  • 1. All-atom empirical potential for molecular modeling and dynamics studies of proteins.
    MacKerell AD; Bashford D; Bellott M; Dunbrack RL; Evanseck JD; Field MJ; Fischer S; Gao J; Guo H; Ha S; Joseph-McCarthy D; Kuchnir L; Kuczera K; Lau FT; Mattos C; Michnick S; Ngo T; Nguyen DT; Prodhom B; Reiher WE; Roux B; Schlenkrich M; Smith JC; Stote R; Straub J; Watanabe M; Wiórkiewicz-Kuczera J; Yin D; Karplus M
    J Phys Chem B; 1998 Apr; 102(18):3586-616. PubMed ID: 24889800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations.
    Patel S; Brooks CL
    J Comput Chem; 2004 Jan; 25(1):1-15. PubMed ID: 14634989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio self-consistent field and potential-dependent partial equalization of orbital electronegativity calculations of hydration properties of N-acetyl-N'-methyl-alanineamide.
    Grant JA; Williams RL; Scheraga HA
    Biopolymers; 1990; 30(9-10):929-49. PubMed ID: 2092822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field.
    Cao Z; Lin Z; Wang J; Liu H
    J Comput Chem; 2009 Mar; 30(4):645-60. PubMed ID: 18780355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Atomic force field FFsol for calculation of molecular interactions of in water environment].
    Pereiaslavets LB; Finkel'shtein AV
    Mol Biol (Mosk); 2010; 44(2):340-54. PubMed ID: 20586195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations of Proteins:  Can the Explicit Water Model Be Varied?
    Nutt DR; Smith JC
    J Chem Theory Comput; 2007 Jul; 3(4):1550-60. PubMed ID: 26633225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations.
    Carravetta V; Monti S
    J Phys Chem B; 2006 Mar; 110(12):6160-9. PubMed ID: 16553430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy minimization of globular proteins with solvent effects included. Comparison of empirical solvation energy terms and explicit water treatment.
    Kierzek A; Zielenkiewicz P
    Acta Biochim Pol; 1997; 44(3):549-56. PubMed ID: 9511964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.
    de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N
    Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the OPLS-AA Force Field for Long Hydrocarbons.
    Siu SW; Pluhackova K; Böckmann RA
    J Chem Theory Comput; 2012 Apr; 8(4):1459-70. PubMed ID: 26596756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 232.