These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 24891292)
1. Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice. Pauls S; Foley NC; Foley DK; LeSauter J; Hastings MH; Maywood ES; Silver R Eur J Neurosci; 2014 Aug; 40(3):2528-40. PubMed ID: 24891292 [TBL] [Abstract][Full Text] [Related]
2. The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior. Hamnett R; Chesham JE; Maywood ES; Hastings MH J Neurosci; 2021 Jan; 41(3):502-512. PubMed ID: 33234609 [TBL] [Abstract][Full Text] [Related]
3. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624 [TBL] [Abstract][Full Text] [Related]
4. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms. Ono D; Honma S; Honma K Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367 [TBL] [Abstract][Full Text] [Related]
5. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Maywood ES; Chesham JE; O'Brien JA; Hastings MH Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14306-11. PubMed ID: 21788520 [TBL] [Abstract][Full Text] [Related]
6. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Ono D; Honma S; Honma K Nat Commun; 2013; 4():1666. PubMed ID: 23575670 [TBL] [Abstract][Full Text] [Related]
7. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524 [TBL] [Abstract][Full Text] [Related]
8. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Maywood ES; Drynan L; Chesham JE; Edwards MD; Dardente H; Fustin JM; Hazlerigg DG; O'Neill JS; Codner GF; Smyllie NJ; Brancaccio M; Hastings MH Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9547-52. PubMed ID: 23690615 [TBL] [Abstract][Full Text] [Related]
9. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling. Evans JA; Pan H; Liu AC; Welsh DK J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370 [TBL] [Abstract][Full Text] [Related]
10. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. Ruan GX; Gamble KL; Risner ML; Young LA; McMahon DG PLoS One; 2012; 7(6):e38985. PubMed ID: 22701739 [TBL] [Abstract][Full Text] [Related]
11. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Patton AP; Edwards MD; Smyllie NJ; Hamnett R; Chesham JE; Brancaccio M; Maywood ES; Hastings MH Nat Commun; 2020 Jul; 11(1):3394. PubMed ID: 32636383 [TBL] [Abstract][Full Text] [Related]
12. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. Hastings MH; Brancaccio M; Maywood ES J Neuroendocrinol; 2014 Jan; 26(1):2-10. PubMed ID: 24329967 [TBL] [Abstract][Full Text] [Related]
13. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572 [TBL] [Abstract][Full Text] [Related]
14. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK eNeuro; 2017; 4(4):. PubMed ID: 28828400 [TBL] [Abstract][Full Text] [Related]
15. Identifying spatial and temporal organization in the circadian clock (Commentary on Pauls et al.). Piggins HD Eur J Neurosci; 2014 Aug; 40(3):2527. PubMed ID: 25088314 [No Abstract] [Full Text] [Related]
16. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability. Wegner S; Belle MDC; Hughes ATL; Diekman CO; Piggins HD J Neurosci; 2017 Aug; 37(33):7824-7836. PubMed ID: 28698388 [TBL] [Abstract][Full Text] [Related]
17. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus. Patton AP; Chesham JE; Hastings MH J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609 [TBL] [Abstract][Full Text] [Related]
18. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. Maywood ES; Elliott TS; Patton AP; Krogager TP; Chesham JE; Ernst RJ; Beránek V; Brancaccio M; Chin JW; Hastings MH Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12388-E12397. PubMed ID: 30487216 [TBL] [Abstract][Full Text] [Related]
19. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Ono D; Honma S; Honma K Sci Adv; 2016 Sep; 2(9):e1600960. PubMed ID: 27626074 [TBL] [Abstract][Full Text] [Related]
20. Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. Atkinson SE; Maywood ES; Chesham JE; Wozny C; Colwell CS; Hastings MH; Williams SR J Biol Rhythms; 2011 Jun; 26(3):210-20. PubMed ID: 21628548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]