BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 24891506)

  • 1. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.
    Cannan WJ; Tsang BP; Wallace SS; Pederson DS
    J Biol Chem; 2014 Jul; 289(29):19881-93. PubMed ID: 24891506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks.
    Yang N; Galick H; Wallace SS
    DNA Repair (Amst); 2004 Oct; 3(10):1323-34. PubMed ID: 15336627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in gamma-irradiated human cells.
    Yang N; Chaudhry MA; Wallace SS
    DNA Repair (Amst); 2006 Jan; 5(1):43-51. PubMed ID: 16111924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1.
    Prasad A; Wallace SS; Pederson DS
    Mol Cell Biol; 2007 Dec; 27(24):8442-53. PubMed ID: 17923696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1.
    Odell ID; Newick K; Heintz NH; Wallace SS; Pederson DS
    DNA Repair (Amst); 2010 Feb; 9(2):134-43. PubMed ID: 20005182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair.
    Odell ID; Barbour JE; Murphy DL; Della-Maria JA; Sweasy JB; Tomkinson AE; Wallace SS; Pederson DS
    Mol Cell Biol; 2011 Nov; 31(22):4623-32. PubMed ID: 21930793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity.
    Hinz JM
    Mutat Res; 2014; 766-767():19-24. PubMed ID: 25847267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes.
    Maher RL; Prasad A; Rizvanova O; Wallace SS; Pederson DS
    DNA Repair (Amst); 2013 Nov; 12(11):964-71. PubMed ID: 24051050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes.
    Maher RL; Marsden CG; Averill AM; Wallace SS; Sweasy JB; Pederson DS
    DNA Repair (Amst); 2017 Sep; 57():91-97. PubMed ID: 28709015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lyase activity of bifunctional DNA glycosylases and the 3'-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes.
    Maher RL; Wallace SS; Pederson DS
    Nucleic Acids Res; 2019 Apr; 47(6):2922-2931. PubMed ID: 30649547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.
    Bilotti K; Kennedy EE; Li C; Delaney S
    DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin dynamics and the repair of DNA double strand breaks.
    Xu Y; Price BD
    Cell Cycle; 2011 Jan; 10(2):261-7. PubMed ID: 21212734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rules of engagement for base excision repair in chromatin.
    Odell ID; Wallace SS; Pederson DS
    J Cell Physiol; 2013 Feb; 228(2):258-66. PubMed ID: 22718094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of radiation-induced base lesion excision and the order of enzymatic treatment.
    Shiraishi I; Shikazono N; Suzuki M; Fujii K; Yokoya A
    Int J Radiat Biol; 2017 Mar; 93(3):295-302. PubMed ID: 27707033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; PiƩtrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes.
    Beard BC; Wilson SH; Smerdon MJ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7465-70. PubMed ID: 12799467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes.
    Rodriguez Y; Smerdon MJ
    J Biol Chem; 2013 May; 288(19):13863-75. PubMed ID: 23543741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirements for DNA bubble structure for efficient cleavage by helix-two-turn-helix DNA glycosylases.
    Makasheva KA; Endutkin AV; Zharkov DO
    Mutagenesis; 2020 Feb; 35(1):119-128. PubMed ID: 31784740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges for base excision repair enzymes: Acquiring access to damaged DNA in chromatin.
    Li C; Delaney S
    Enzymes; 2019; 45():27-57. PubMed ID: 31627880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.
    Banerjee S; Chakraborty S; Jacinto MP; Paul MD; Balster MV; Greenberg MM
    Biochemistry; 2017 Jan; 56(1):14-21. PubMed ID: 28005342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.