BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24892345)

  • 1. A respiratory compensating system: design and performance evaluation.
    Chuang HC; Huang DY; Tien DC; Wu RH; Hsu CH
    J Appl Clin Med Phys; 2014 May; 15(3):4710. PubMed ID: 24892345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compensating system of respiratory motion for tumor tracking: design and verification.
    Chuang HC; Chiou CY; Tien DC; Huang DY; Wu RH; Hsu CH
    J Xray Sci Technol; 2012; 20(2):161-74. PubMed ID: 22635172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification and compensation of respiratory motion using an ultrasound imaging system.
    Chuang HC; Hsu HY; Chiu WH; Tien DC; Wu RH; Hsu CH
    Med Phys; 2015 Mar; 42(3):1193-9. PubMed ID: 25735274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An autotuning respiration compensation system based on ultrasound image tracking.
    Kuo CC; Chuang HC; Teng KT; Hsu HY; Tien DC; Wu CJ; Jeng SC; Chiou JF
    J Xray Sci Technol; 2016 Nov; 24(6):875-892. PubMed ID: 27612051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric investigation of lung tumor motion compensation with a robotic respiratory tracking system: an experimental study.
    Nioutsikou E; Seppenwoolde Y; Symonds-Tayler JR; Heijmen B; Evans P; Webb S
    Med Phys; 2008 Apr; 35(4):1232-40. PubMed ID: 18491515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.
    Ting LL; Chuang HC; Liao AH; Kuo CC; Yu HW; Zhou YL; Tien DC; Jeng SC; Chiou JF
    Phys Med; 2018 May; 49():11-18. PubMed ID: 29866336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online correction for respiratory motion: evaluation of two different imaging geometries.
    Nill S; Unkelbach J; Dietrich L; Oelfke U
    Phys Med Biol; 2005 Sep; 50(17):4087-96. PubMed ID: 16177532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking and compensation of respiration pattern by an automatic compensation system.
    Ting LL; Chuang HC; Kuo CC; Jian LA; Huang MY; Liao AH; Tien DC; Jeng SC; Chiou JF
    Med Phys; 2017 Jun; 44(6):2077-2095. PubMed ID: 28370095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion.
    Kung JH; Zygmanski P; Choi N; Chen GT
    Med Phys; 2003 Jun; 30(6):1103-9. PubMed ID: 12852534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of lung tumour position based on spirometry and on abdominal displacement: accuracy and reproducibility.
    Hoisak JD; Sixel KE; Tirona R; Cheung PC; Pignol JP
    Radiother Oncol; 2006 Mar; 78(3):339-46. PubMed ID: 16537094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-radar wireless system for respiratory gating and accurate tumor tracking in lung cancer radiotherapy.
    Gu C; Li R; Jiang SB; Li C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():417-20. PubMed ID: 22254337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel lung IMRT planning algorithms with nonuniform dose delivery strategy to account for respiratory motion.
    Li X; Zhang P; Mah D; Gewanter R; Kutcher G
    Med Phys; 2006 Sep; 33(9):3390-8. PubMed ID: 17022235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator.
    Chui CS; Yorke E; Hong L
    Med Phys; 2003 Jul; 30(7):1736-46. PubMed ID: 12906191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The feasibility of an approximate irregular field dose distribution simulation program applied to a respiratory motion compensation system.
    Ting LL; Liao AH; Ganesan M; Kuo CC; Yu HW; Chen PJ; Jeng SC; Chiou JF; Chuang HC
    Phys Med; 2021 Aug; 88():117-126. PubMed ID: 34237677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.
    Jiang R; Barnett RB; Chow JC; Chen JZ
    Phys Med Biol; 2007 Mar; 52(5):1469-84. PubMed ID: 17301465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy.
    Qiu P; D'Souza WD; McAvoy TJ; Ray Liu KJ
    Phys Med Biol; 2007 Oct; 52(19):5831-54. PubMed ID: 17881803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical implementation of target tracking by breathing synchronized delivery.
    Tewatia D; Zhang T; Tome W; Paliwal B; Metha M
    Med Phys; 2006 Nov; 33(11):4330-6. PubMed ID: 17153412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory motional effect on cone-beam CT in lung radiation surgery.
    Song JY; Nam TK; Ahn SJ; Chung WK; Yoon MS; Nah BS
    Med Dosim; 2009; 34(2):117-25. PubMed ID: 19410140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system.
    Miyamoto N; Ishikawa M; Sutherland K; Suzuki R; Matsuura T; Toramatsu C; Takao S; Nihongi H; Shimizu S; Umegaki K; Shirato H
    J Radiat Res; 2015 Jan; 56(1):186-96. PubMed ID: 25129556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling respiratory motion for reducing motion artifacts in 4D CT images.
    Zhang Y; Yang J; Zhang L; Court LE; Balter PA; Dong L
    Med Phys; 2013 Apr; 40(4):041716. PubMed ID: 23556886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.