BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24892597)

  • 1. In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.
    Rayner MK; Billing DG; Coville NJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Jun; 70(Pt 3):498-509. PubMed ID: 24892597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature.
    Jamalluddin NA; Abdullah AZ
    Ultrason Sonochem; 2011 Mar; 18(2):669-78. PubMed ID: 20933452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light.
    Yang Q; Xie C; Xu Z; Gao Z; Du Y
    J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.
    Mutuma BK; Shao GN; Kim WD; Kim HT
    J Colloid Interface Sci; 2015 Mar; 442():1-7. PubMed ID: 25514642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Nb and Sc doping on the phase transformation of sol-gel processed TiO2 nanoparticles.
    Ahmad A; Buzby S; Ni C; Ismat Shah S
    J Nanosci Nanotechnol; 2008 May; 8(5):2410-8. PubMed ID: 18572656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcination temperature on physicochemical property and activity of CuSO
    Yu Y; Zhang J; Chen C; He C; Miao J; Li H; Chen J
    J Environ Sci (China); 2020 May; 91():237-245. PubMed ID: 32172973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the Activity and the Stability in CO Oxidation of Au-Cu Catalysts Supported on TiO2 in Anatase or Rutile Phase.
    Zanella R; Bokhimi X; Maturano V; Morales A
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7002-9. PubMed ID: 26716274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z; Highfield J; Lin M; Teo J; Han YF
    Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and catalytic activity of anatase and rutile titania supported manganese oxide catalysts for selective catalytic reduction of NO by NH3.
    Zhuang K; Qiu J; Tang F; Xu B; Fan Y
    Phys Chem Chem Phys; 2011 Mar; 13(10):4463-9. PubMed ID: 21258687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl(2) aqueous solution at low temperatures.
    Li Y; Lee NH; Hwang DS; Song JS; Lee EG; Kim SJ
    Langmuir; 2004 Dec; 20(25):10838-44. PubMed ID: 15568831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchically porous titania networks with tunable anatase:rutile ratios and their enhanced photocatalytic activities.
    Cao L; Chen D; Li W; Caruso RA
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13129-37. PubMed ID: 25090241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of gas flow rates on the anatase-rutile transformation temperature of nanocrystalline TiO2 synthesised by chemical vapour synthesis.
    Ahmad MI; Bhattacharya SS; Fasel C; Hahn H
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5572-7. PubMed ID: 19928267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of calcination temperature on the properties of titanium oxide sulfur recovery catalysts.
    Ma G; Guo Q; Hou Y; Huang Z; Han X; Fang Y
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7181-8. PubMed ID: 25924388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly dispersed titania-supported iron oxide catalysts for efficient heterogeneous photo-Fenton oxidation: Influencing factors, synergistic effects and mechanism insight.
    Zhang Y; Wu L; Wang Y; Zhang Y; Wang H; Wang X; Chen XD; Wu Z
    J Colloid Interface Sci; 2021 Apr; 587():467-478. PubMed ID: 33385848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster.
    Yang J; Lv CQ; Guo Y; Wang GC
    J Chem Phys; 2012 Mar; 136(10):104107. PubMed ID: 22423828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes.
    Albetran H; Vega V; Prida VM; Low IM
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29473854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and structural behavior of TiO2 nanoparticles in the presence of WO3: crystallization of the oxide composite system.
    Kubacka A; Iglesias-Juez A; di Michiel M; Becerro AI; Fernández-García M
    Phys Chem Chem Phys; 2014 Sep; 16(36):19540-9. PubMed ID: 25105950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Study on the Crystal Transformation of Fe-Doped TiO
    Zhang L; Luo X; Zhang JD; Long YF; Xue X; Xu BJ
    ACS Omega; 2021 Jan; 6(1):965-975. PubMed ID: 33458548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.