BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 24892785)

  • 1. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review.
    Luo SC; Sivashanmugan K; Liao JD; Yao CK; Peng HC
    Biosens Bioelectron; 2014 Nov; 61():232-40. PubMed ID: 24892785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering.
    Kim JH; Kang T; Yoo SM; Lee SY; Kim B; Choi YK
    Nanotechnology; 2009 Jun; 20(23):235302. PubMed ID: 19448293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms.
    Xu J; Zhang L; Gong H; Homola J; Yu Q
    Small; 2011 Feb; 7(3):371-6. PubMed ID: 21294266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering-active nanostructures and strategies for bioassays.
    Jun BH; Kim G; Noh MS; Kang H; Kim YK; Cho MH; Jeong DH; Lee YS
    Nanomedicine (Lond); 2011 Oct; 6(8):1463-80. PubMed ID: 22026382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication.
    Chang TW; Gartia MR; Seo S; Hsiao A; Liu GL
    Nanotechnology; 2014 Apr; 25(14):145304. PubMed ID: 24633089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SERS-active nanocrystalline pd substrate and its nanopatterning leading to biochip fabrication.
    Bhuvana T; Kulkarni GU
    Small; 2008 May; 4(5):670-6. PubMed ID: 18491365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanosponges (AuNS): a versatile nanostructure for surface-enhanced Raman spectroscopic detection of small molecules and biomolecules.
    Wallace GQ; Zuin MS; Tabatabaei M; Gobbo P; Lagugné-Labarthet F; Workentin MS
    Analyst; 2015 Nov; 140(21):7278-82. PubMed ID: 26347904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label.
    Fang C; Agarwal A; Buddharaju KD; Khalid NM; Salim SM; Widjaja E; Garland MV; Balasubramanian N; Kwong DL
    Biosens Bioelectron; 2008 Oct; 24(2):216-21. PubMed ID: 18485693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.
    Vo-Dinh T; Liu Y; Fales AM; Ngo H; Wang HN; Register JK; Yuan H; Norton SJ; Griffin GD
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):17-33. PubMed ID: 25316579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple SERS substrates: powerful, portable, and full of potential.
    Betz JF; Yu WW; Cheng Y; White IM; Rubloff GW
    Phys Chem Chem Phys; 2014 Feb; 16(6):2224-39. PubMed ID: 24366393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing.
    Dinish US; Yaw FC; Agarwal A; Olivo M
    Biosens Bioelectron; 2011 Jan; 26(5):1987-92. PubMed ID: 20869866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing.
    Kostovski G; White DJ; Mitchell A; Austin MW; Stoddart PR
    Biosens Bioelectron; 2009 Jan; 24(5):1531-5. PubMed ID: 19084390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.
    De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ
    Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single functional magnetic-bead as universal biosensing platform for trace analyte detection using SERS-nanobioprobe.
    Xiao R; Wang CW; Zhu AN; Long F
    Biosens Bioelectron; 2016 May; 79():661-8. PubMed ID: 26765530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering studies on immunoassay.
    Xu S; Ji X; Xu W; Zhao B; Dou X; Bai Y; Ozaki Y
    J Biomed Opt; 2005; 10(3):031112. PubMed ID: 16229637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B
    Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing.
    Abu Hatab NA; Oran JM; Sepaniak MJ
    ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanoparticles functionalized 3D-MoS
    Singha SS; Mondal S; Bhattacharya TS; Das L; Sen K; Satpati B; Das K; Singha A
    Biosens Bioelectron; 2018 Nov; 119():10-17. PubMed ID: 30098461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman spectroscopy: substrate-related issues.
    Lin XM; Cui Y; Xu YH; Ren B; Tian ZQ
    Anal Bioanal Chem; 2009 Aug; 394(7):1729-45. PubMed ID: 19381618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.