BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24892970)

  • 1. Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system.
    Wall RA; Barton JK
    J Biomed Opt; 2014 Jun; 19(6):067002. PubMed ID: 24892970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry.
    Lin SP; Wang L; Jacques SL; Tittel FK
    Appl Opt; 1997 Jan; 36(1):136-43. PubMed ID: 18250654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media.
    Reif R; A'Amar O; Bigio IJ
    Appl Opt; 2007 Oct; 46(29):7317-28. PubMed ID: 17932546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue.
    Wei HJ; Xing D; He BH; Gu HM; Wu GY; Chen XM
    BMC Gastroenterol; 2009 Aug; 9():64. PubMed ID: 19715589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding Functionality of Commercial Optical Coherence Tomography Systems by Integrating a Custom Endoscope.
    Welge WA; Barton JK
    PLoS One; 2015; 10(9):e0139396. PubMed ID: 26418811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging.
    Desjardins AE; Vakoc BJ; Bilenca A; Tearney GJ; Bouma BE
    Opt Lett; 2007 Jun; 32(11):1560-2. PubMed ID: 17546188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-function corrected diffusion model for diffuse reflectance of a pencil beam obliquely incident on a semi-infinite turbid medium.
    Zemp RJ
    J Biomed Opt; 2013 Jun; 18(6):067005. PubMed ID: 23736290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
    Kamran F; Andersen PE
    Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography.
    Risi MD; Makhlouf H; Rouse AR; Gmitro AF
    Appl Opt; 2015 Jan; 54(1):101-13. PubMed ID: 25967012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane.
    Kirsten L; Schindler M; Morgenstern J; Erkkilä MT; Golde J; Walther J; Rottmann P; Kemper M; Bornitz M; Neudert M; Zahnert T; Koch E
    J Biomed Opt; 2018 Dec; 24(3):1-11. PubMed ID: 30516037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative spectroscopic imaging for non-invasive early cancer detection.
    Yu CC; Lau C; O'Donoghue G; Mirkovic J; McGee S; Galindo L; Elackattu A; Stier E; Grillone G; Badizadegan K; Dasari RR; Feld MS
    Opt Express; 2008 Sep; 16(20):16227-39. PubMed ID: 18825262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope.
    Wall RA; Barton JK
    J Biomed Opt; 2012 Aug; 17(8):086003. PubMed ID: 23224190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White light oblique incidence reflectometer formeasuring absorption and reduced scatteringspectra of tissue-like turbid media.
    Marquez G; Wang L
    Opt Express; 1997 Dec; 1(13):454-60. PubMed ID: 19377569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.
    Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties.
    Swartling J; Dam JS; Andersson-Engels S
    Appl Opt; 2003 Aug; 42(22):4612-20. PubMed ID: 12916630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography.
    Pfau PR; Sivak MV; Chak A; Kinnard M; Wong RC; Isenberg GA; Izatt JA; Rollins A; Westphal V
    Gastrointest Endosc; 2003 Aug; 58(2):196-202. PubMed ID: 12872085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-resolved low-coherence enhanced backscattering.
    Kim YL; Liu Y; Turzhitsky VM; Wali RK; Roy HK; Backman V
    Opt Lett; 2005 Apr; 30(7):741-3. PubMed ID: 15832924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo targeting of colonic dysplasia on fluorescence endoscopy with near-infrared octapeptide.
    Liu Z; Miller SJ; Joshi BP; Wang TD
    Gut; 2013 Mar; 62(3):395-403. PubMed ID: 22427239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical model for target depth estimation used in the time-domain subsurface imaging.
    Sormaz M; Jenny P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2174-80. PubMed ID: 23201666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual optical modality endoscopic imaging of cancer development in the mouse colon.
    Keenan MR; Leung SJ; Rice PS; Wall RA; Barton JK
    Lasers Surg Med; 2015 Jan; 47(1):30-9. PubMed ID: 25449147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.