BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24893068)

  • 1. Effect of the alkyl chain length of secondary amines on the phase transfer of gold nanoparticles from water to toluene.
    Soliwoda K; Tomaszewska E; Tkacz-Szczesna B; Mackiewicz E; Rosowski M; Bald A; Blanck C; Schmutz M; Novák J; Schreiber F; Celichowski G; Grobelny J
    Langmuir; 2014 Jun; 30(23):6684-93. PubMed ID: 24893068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile phase transfer of gold nanoparticles from aqueous media to different organic media.
    Karg M; Schelero N; Oppel C; Gradzielski M; Hellweg T; von Klitzing R
    Chemistry; 2011 Apr; 17(16):4648-54. PubMed ID: 21433128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convenient phase transfer protocol to functionalize gold nanoparticles with short alkylamine ligands.
    Yang G; Chang WS; Hallinan DT
    J Colloid Interface Sci; 2015 Dec; 460():164-72. PubMed ID: 26319333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules.
    Merican Z; Schiller TL; Hawker CJ; Fredericks PM; Blakey I
    Langmuir; 2007 Oct; 23(21):10539-45. PubMed ID: 17824719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid phase transfer method for nanoparticles using alkylamine stabilizers.
    Wang X; Xu S; Zhou J; Xu W
    J Colloid Interface Sci; 2010 Aug; 348(1):24-8. PubMed ID: 20427048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible, reagentless solubility changes in phosphatidylcholine-stabilized gold nanoparticles.
    Mackiewicz MR; Ayres BR; Reed SM
    Nanotechnology; 2008 Mar; 19(11):115607. PubMed ID: 21730558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of alkylthiols and alkylamines for the phase transfer of gold nanoparticles from an aqueous phase to n-hexane.
    Li L; Leopold K; Schuster M
    J Colloid Interface Sci; 2013 May; 397():199-205. PubMed ID: 23452516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep eutectic solvents for the self-assembly of gold nanoparticles: a SAXS, UV-Vis, and TEM investigation.
    Raghuwanshi VS; Ochmann M; Hoell A; Polzer F; Rademann K
    Langmuir; 2014 Jun; 30(21):6038-46. PubMed ID: 24814886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.
    Pocoví-Martínez S; Parreño-Romero M; Agouram S; Pérez-Prieto J
    Langmuir; 2011 May; 27(9):5234-41. PubMed ID: 21480603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size dependent catalysis with CTAB-stabilized gold nanoparticles.
    Fenger R; Fertitta E; Kirmse H; Thünemann AF; Rademann K
    Phys Chem Chem Phys; 2012 Jul; 14(26):9343-9. PubMed ID: 22549475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel core etching technique of gold nanoparticles for colorimetric dopamine detection.
    Lee HC; Chen TH; Tseng WL; Lin CH
    Analyst; 2012 Nov; 137(22):5352-7. PubMed ID: 23016153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, stabilization, functionalization and, DFT calculations of gold nanoparticles in fluorous phases (PTFE and ionic liquids).
    Redel E; Walter M; Thomann R; Vollmer C; Hussein L; Scherer H; Krüger M; Janiak C
    Chemistry; 2009 Oct; 15(39):10047-59. PubMed ID: 19697371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled aggregation of functionalized gold nanoparticles with a novel conjugated oligomer.
    Liu X; He X; Jiu T; Yuan M; Xu J; Lv J; Liu H; Li Y
    Chemphyschem; 2007 Apr; 8(6):906-12. PubMed ID: 17387682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal aggregation properties of nanoparticles modified with temperature sensitive copolymers.
    Hamner KL; Maye MM
    Langmuir; 2013 Dec; 29(49):15217-23. PubMed ID: 24266340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transfer of large anisotropic plasmon resonant silver nanoparticles from aqueous to organic solution.
    Kulkarni AP; Munechika K; Noone KM; Smith JM; Ginger DS
    Langmuir; 2009 Jul; 25(14):7932-9. PubMed ID: 19441811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity.
    Salari Joo H; Kalbassi MR; Yu IJ; Lee JH; Johari SA
    Aquat Toxicol; 2013 Sep; 140-141():398-406. PubMed ID: 23907091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization.
    Sujitha MV; Kannan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():15-23. PubMed ID: 23211617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot aqueous phase growth of biocompatible 15-130 nm gold nanoparticles stabilized with bidentate PEG.
    Oh E; Susumu K; Jain V; Kim M; Huston A
    J Colloid Interface Sci; 2012 Jun; 376(1):107-11. PubMed ID: 22480398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Phase Transfer and Surface Modification of TiO₂ Nanoparticles Using Alkylphosphonic Acids: Optimization and Structure of the Organosols.
    Schmitt Pauly C; Genix AC; Alauzun JG; Guerrero G; Appavou MS; Pérez J; Oberdisse J; Mutin PH
    Langmuir; 2015 Oct; 31(40):10966-74. PubMed ID: 26421961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.