BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24893649)

  • 1. Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder.
    Lee KY; Shamsuddin SR; Fortea-Verdejo M; Bismarck A
    J Vis Exp; 2014 May; (87):. PubMed ID: 24893649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semi-Analytical Model to Predict Infusion Time and Reinforcement Thickness in VARTM and SCRIMP Processes.
    Rubino F; Carlone P
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.
    Barari B; Omrani E; Dorri Moghadam A; Menezes PL; Pillai KM; Rohatgi PK
    Carbohydr Polym; 2016 Aug; 147():282-293. PubMed ID: 27178934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-fiber preform reinforcement of dental resin composite restorations.
    Xu HH; Schumacher GE; Eichmiller FC; Peterson RC; Antonucci JM; Mueller HJ
    Dent Mater; 2003 Sep; 19(6):523-30. PubMed ID: 12837401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.
    Lavoratti A; Scienza LC; Zattera AJ
    Carbohydr Polym; 2016 Jan; 136():955-63. PubMed ID: 26572434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.
    Seong DG; Ha JR; Lee JU; Lee W; Kim BS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9057-60. PubMed ID: 26726642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Resin Transfer Molding (RTM) Infiltration of Fiber-Reinforced Composites Made by Tailored Fiber Placement.
    Bittrich L; Seuffert J; Dietrich S; Uhlig K; Lisboa TV; Kärger L; Spickenheuer A
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Characterization on Solvent Treated Cellulose Nanofiber Preforms Using Solution Dipping-Hot Press Technique.
    Thirunavukarasu D; Shimamura Y; Tohgo K; Fujii T
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.
    Pommet M; Juntaro J; Heng JY; Mantalaris A; Lee AF; Wilson K; Kalinka G; Shaffer MS; Bismarck A
    Biomacromolecules; 2008 Jun; 9(6):1643-51. PubMed ID: 18491942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Strength Superstretchable Helical Bacterial Cellulose Fibers with a "Self-Fiber-Reinforced Structure".
    Liang Q; Zhang D; Ji P; Sheng N; Zhang M; Wu Z; Chen S; Wang H
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1545-1554. PubMed ID: 33377390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure.
    Kwak HW; Eom J; Cho SY; Lee ME; Jin HJ
    Int J Biol Macromol; 2019 Apr; 127():146-152. PubMed ID: 30611804
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration.
    Ding Q; Zeng J; Wang B; Tang D; Chen K; Gao W
    Carbohydr Polym; 2019 Mar; 207():44-51. PubMed ID: 30600026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.
    Afra E; Yousefi H; Hadilam MM; Nishino T
    Carbohydr Polym; 2013 Sep; 97(2):725-30. PubMed ID: 23911507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.
    Sehaqui H; Morimune S; Nishino T; Berglund LA
    Biomacromolecules; 2012 Nov; 13(11):3661-7. PubMed ID: 23046114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications.
    Zwawi M
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33466725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nondestructive and noncontact evaluation of cellulose nanofiber-reinforced composites using terahertz time-domain spectroscopy.
    Nakanishi A; Kanno N; Satozono H
    Sci Rep; 2022 Nov; 12(1):19284. PubMed ID: 36369469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures.
    Frey M; Schneider L; Masania K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35305-35311. PubMed ID: 31454224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.