These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 24894268)
1. Image-guided convection-enhanced delivery into agarose gel models of the brain. Sillay KA; McClatchy SG; Shepherd BA; Venable GT; Fuehrer TS J Vis Exp; 2014 May; (87):. PubMed ID: 24894268 [TBL] [Abstract][Full Text] [Related]
2. Benchmarking the ERG valve tip and MRI Interventions Smart Flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease. Sillay K; Schomberg D; Hinchman A; Kumbier L; Ross C; Kubota K; Brodsky E; Miranpuri G J Neural Eng; 2012 Apr; 9(2):026009. PubMed ID: 22331865 [TBL] [Abstract][Full Text] [Related]
3. Infusion-line pressure as a real-time monitor of convection-enhanced delivery in pre-clinical models. Lam MF; Foo SW; Thomas MG; Lind CR J Neurosci Methods; 2014 Jan; 221():127-31. PubMed ID: 24120968 [TBL] [Abstract][Full Text] [Related]
5. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Fiandaca MS; Forsayeth JR; Dickinson PJ; Bankiewicz KS Neurotherapeutics; 2008 Jan; 5(1):123-7. PubMed ID: 18164491 [TBL] [Abstract][Full Text] [Related]
6. Clinical tolerance of corticospinal tracts in convection-enhanced delivery to the brainstem. Morgenstern PF; Zhou Z; Wembacher-Schröder E; Cina V; Tsiouris AJ; Souweidane MM J Neurosurg; 2019 Dec; 131(6):1812-1818. PubMed ID: 30579270 [TBL] [Abstract][Full Text] [Related]
7. Evaluating infusate parameters for direct drug delivery to the brainstem: a comparative study of convection-enhanced delivery versus osmotic pump delivery. Rechberger JS; Power EA; Lu VM; Zhang L; Sarkaria JN; Daniels DJ Neurosurg Focus; 2020 Jan; 48(1):E2. PubMed ID: 31896090 [TBL] [Abstract][Full Text] [Related]
8. Convection-enhanced delivery with controlled catheter movement: A parametric finite element analysis. Mehta JN; Rausch MK; Rylander CG Int J Numer Method Biomed Eng; 2022 Sep; 38(9):e3635. PubMed ID: 35763587 [TBL] [Abstract][Full Text] [Related]
11. In-vitro and in-vivo performance studies of a porous infusion catheter designed for intraparenchymal delivery of therapeutic agents of varying size. Brady ML; Grondin R; Zhang Z; Pomerleau F; Powell D; Huettl P; Wilson M; Stice J; Gerhardt GA; Abramov V; Raghavan R J Neurosci Methods; 2022 Aug; 378():109643. PubMed ID: 35691412 [TBL] [Abstract][Full Text] [Related]
12. Methods for determining agent concentration profiles in agarose gel during convection-enhanced delivery. Sindhwani N; Ivanchenko O; Lueshen E; Prem K; Linninger AA IEEE Trans Biomed Eng; 2011 Mar; 58(3):626-32. PubMed ID: 21342811 [TBL] [Abstract][Full Text] [Related]
13. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. Krauze MT; Saito R; Noble C; Tamas M; Bringas J; Park JW; Berger MS; Bankiewicz K J Neurosurg; 2005 Nov; 103(5):923-9. PubMed ID: 16304999 [TBL] [Abstract][Full Text] [Related]
14. Prolonged intracerebral convection-enhanced delivery of topotecan with a subcutaneously implantable infusion pump. Sonabend AM; Stuart RM; Yun J; Yanagihara T; Mohajed H; Dashnaw S; Bruce SS; Brown T; Romanov A; Sebastian M; Arias-Mendoza F; Bagiella E; Canoll P; Bruce JN Neuro Oncol; 2011 Aug; 13(8):886-93. PubMed ID: 21750007 [TBL] [Abstract][Full Text] [Related]
15. Deformational changes after convection-enhanced delivery in the pediatric brainstem. Bander ED; Tizi K; Wembacher-Schroeder E; Thomson R; Donzelli M; Vasconcellos E; Souweidane MM Neurosurg Focus; 2020 Jan; 48(1):E3. PubMed ID: 31896089 [TBL] [Abstract][Full Text] [Related]
16. Safety and feasibility of convection-enhanced delivery of nimustine hydrochloride co-infused with free gadolinium for real-time monitoring in the primate brain. Sugiyama S; Saito R; Nakamura T; Yamashita Y; Yokosawa M; Sonoda Y; Kumabe T; Watanabe M; Tominaga T Neurol Res; 2012 Jul; 34(6):581-7. PubMed ID: 22709625 [TBL] [Abstract][Full Text] [Related]
17. Convection-enhanced delivery of SN-38-loaded polymeric micelles (NK012) enables consistent distribution of SN-38 and is effective against rodent intracranial brain tumor models. Zhang R; Saito R; Mano Y; Sumiyoshi A; Kanamori M; Sonoda Y; Kawashima R; Tominaga T Drug Deliv; 2016 Oct; 23(8):2780-2786. PubMed ID: 26330269 [TBL] [Abstract][Full Text] [Related]
18. Convection Enhanced Delivery: A Comparison of infusion characteristics in ex vivo and in vivo non-human primate brain tissue. Miranpuri G; Hinchman A; Wang A; Schomberg D; Kubota K; Brady M; Raghavan R; Bruner K; Brodsky E; Block W; Grabow B; Raschke J; Alexander A; Ross C; Simmons H; Sillay K Ann Neurosci; 2013 Jul; 20(3):108-14. PubMed ID: 25206026 [TBL] [Abstract][Full Text] [Related]
19. Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Saito R; Krauze MT; Bringas JR; Noble C; McKnight TR; Jackson P; Wendland MF; Mamot C; Drummond DC; Kirpotin DB; Hong K; Berger MS; Park JW; Bankiewicz KS Exp Neurol; 2005 Dec; 196(2):381-9. PubMed ID: 16197944 [TBL] [Abstract][Full Text] [Related]
20. Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Mardor Y; Rahav O; Zauberman Y; Lidar Z; Ocherashvilli A; Daniels D; Roth Y; Maier SE; Orenstein A; Ram Z Cancer Res; 2005 Aug; 65(15):6858-63. PubMed ID: 16061669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]