These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24894379)
1. A framework for application of metabolic modeling in yeast to predict the effects of nsSNV in human orthologs. Dingerdissen H; Weaver DS; Karp PD; Pan Y; Simonyan V; Mazumder R Biol Direct; 2014 Jun; 9():9. PubMed ID: 24894379 [TBL] [Abstract][Full Text] [Related]
2. Proteome-wide analysis of nonsynonymous single-nucleotide variations in active sites of human proteins. Dingerdissen H; Motwani M; Karagiannis K; Simonyan V; Mazumder R FEBS J; 2013 Mar; 280(6):1542-62. PubMed ID: 23350563 [TBL] [Abstract][Full Text] [Related]
3. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication. Kito K; Ito H; Nohara T; Ohnishi M; Ishibashi Y; Takeda D Mol Cell Proteomics; 2016 Jan; 15(1):218-35. PubMed ID: 26560065 [TBL] [Abstract][Full Text] [Related]
4. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. Otero JM; Vongsangnak W; Asadollahi MA; Olivares-Hernandes R; Maury J; Farinelli L; Barlocher L; Osterås M; Schalk M; Clark A; Nielsen J BMC Genomics; 2010 Dec; 11():723. PubMed ID: 21176163 [TBL] [Abstract][Full Text] [Related]
5. Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology. Kottom TJ; Limper AH Yeast; 2011 Oct; 28(10):707-19. PubMed ID: 21905091 [TBL] [Abstract][Full Text] [Related]
6. Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase. Ždralević M; Longo V; Guaragnella N; Giannattasio S; Timperio AM; Zolla L Mol Biosyst; 2015 Jun; 11(6):1573-83. PubMed ID: 25697364 [TBL] [Abstract][Full Text] [Related]
7. Loss and gain of N-linked glycosylation sequons due to single-nucleotide variation in cancer. Fan Y; Hu Y; Yan C; Goldman R; Pan Y; Mazumder R; Dingerdissen HM Sci Rep; 2018 Mar; 8(1):4322. PubMed ID: 29531238 [TBL] [Abstract][Full Text] [Related]
8. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. Tsvetanova NG; Klass DM; Salzman J; Brown PO PLoS One; 2010 Sep; 5(9):. PubMed ID: 20844764 [TBL] [Abstract][Full Text] [Related]
9. Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth. Ador L; Camasses A; Erbs P; Cavarelli J; Moras D; Gangloff J; Eriani G J Mol Biol; 1999 Apr; 288(2):231-42. PubMed ID: 10329139 [TBL] [Abstract][Full Text] [Related]
11. The yeast mitochondrial proteome, a study of fermentative and respiratory growth. Ohlmeier S; Kastaniotis AJ; Hiltunen JK; Bergmann U J Biol Chem; 2004 Feb; 279(6):3956-79. PubMed ID: 14597615 [TBL] [Abstract][Full Text] [Related]
12. Integration of proteome and transcriptome data reveals the mechanism involved in controlling of Fusarium graminearum by Saccharomyces cerevisiae. Zhao L; Cheng Y; Li B; Gu X; Zhang X; Boateng NAS; Zhang H J Sci Food Agric; 2019 Oct; 99(13):5760-5770. PubMed ID: 31162844 [TBL] [Abstract][Full Text] [Related]
13. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Fromont-Racine M; Rain JC; Legrain P Nat Genet; 1997 Jul; 16(3):277-82. PubMed ID: 9207794 [TBL] [Abstract][Full Text] [Related]
14. The yeast mitochondrial transport proteins: new sequences and consensus residues, lack of direct relation between consensus residues and transmembrane helices, expression patterns of the transport protein genes, and protein-protein interactions with other proteins. Belenkiy R; Haefele A; Eisen MB; Wohlrab H Biochim Biophys Acta; 2000 Jul; 1467(1):207-18. PubMed ID: 10930523 [TBL] [Abstract][Full Text] [Related]
15. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Hodges PE; McKee AH; Davis BP; Payne WE; Garrels JI Nucleic Acids Res; 1999 Jan; 27(1):69-73. PubMed ID: 9847145 [TBL] [Abstract][Full Text] [Related]
16. Yeast as a model eukaryote in toxinology: a functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Mattiazzi M; Petrovič U; Križaj I Toxicon; 2012 Sep; 60(4):558-71. PubMed ID: 22465496 [TBL] [Abstract][Full Text] [Related]
17. Proteome responses to nitrate in bioethanol production contaminant Dekkera bruxellensis. Neto AG; Pestana-Calsa MC; de Morais MA; Calsa T J Proteomics; 2014 Jun; 104():104-11. PubMed ID: 24667144 [TBL] [Abstract][Full Text] [Related]
18. A network of protein-protein interactions in yeast. Schwikowski B; Uetz P; Fields S Nat Biotechnol; 2000 Dec; 18(12):1257-61. PubMed ID: 11101803 [TBL] [Abstract][Full Text] [Related]
19. Yeast proteome variations reveal different adaptive responses to grape must fermentation. Blein-Nicolas M; Albertin W; Valot B; Marullo P; Sicard D; Giraud C; Huet S; Bourgais A; Dillmann C; de Vienne D; Zivy M Mol Biol Evol; 2013 Jun; 30(6):1368-83. PubMed ID: 23493259 [TBL] [Abstract][Full Text] [Related]
20. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts. Scott WT; Smid EJ; Block DE; Notebaart RA Microb Cell Fact; 2021 Oct; 20(1):204. PubMed ID: 34674718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]