These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24894385)

  • 41. Spatiotemporal Transition in the Role of Synaptic Inhibition to the Tail Beat Rhythm of Developing Larval Zebrafish.
    Roussel Y; Paradis M; Gaudreau SF; Lindsey BW; Bui TV
    eNeuro; 2020; 7(1):. PubMed ID: 32005749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differences in the morphology of spinal V2a neurons reflect their recruitment order during swimming in larval zebrafish.
    Menelaou E; VanDunk C; McLean DL
    J Comp Neurol; 2014 Apr; 522(6):1232-48. PubMed ID: 24114934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Adhesion Molecule-Characteristic HNK-1 Carbohydrate Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish.
    Ma L; Shen HF; Shen YQ; Schachner M
    Mol Neurobiol; 2017 Jul; 54(5):3253-3263. PubMed ID: 27086029
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy.
    Wakabayashi Y; Komori H; Kawa-Uchi T; Mochida K; Takahashi M; Qi M; Otake K; Shinomiya K
    Spine (Phila Pa 1976); 2001 Jun; 26(11):1215-22. PubMed ID: 11389386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish.
    Pan HC; Lin JF; Ma LP; Shen YQ; Schachner M
    Eur J Neurosci; 2013 Jan; 37(2):203-11. PubMed ID: 23106570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Primary cell culture of adult zebrafish spinal neurons for electrophysiological studies.
    Meade ME; Roginsky JE; Schulz JR
    J Neurosci Methods; 2019 Jul; 322():50-57. PubMed ID: 31028770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site.
    Tillakaratne NJ; Guu JJ; de Leon RD; Bigbee AJ; London NJ; Zhong H; Ziegler MD; Joynes RL; Roy RR; Edgerton VR
    Neuroscience; 2010 Mar; 166(1):23-33. PubMed ID: 20006680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey.
    Armstrong J; Zhang L; McClellan AD
    Exp Neurol; 2003 Apr; 180(2):156-66. PubMed ID: 12684029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting.
    Harvey BM; Baxter M; Granato M
    PLoS One; 2019; 14(6):e0218667. PubMed ID: 31220164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
    Yu Y; Schachner M
    Eur J Neurosci; 2013 Jul; 38(2):2280-9. PubMed ID: 23607754
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sparing and recovery of function in spinal larval frogs (Rana catesbeiana): effect of level of transection.
    Brenner PR; Stehouwer DJ
    Behav Neural Biol; 1991 Nov; 56(3):292-306. PubMed ID: 1662043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging.
    Schlüßler R; Möllmert S; Abuhattum S; Cojoc G; Müller P; Kim K; Möckel C; Zimmermann C; Czarske J; Guck J
    Biophys J; 2018 Sep; 115(5):911-923. PubMed ID: 30122291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L; Palmer R; McClellan AD
    J Comp Neurol; 2002 May; 447(2):128-37. PubMed ID: 11977116
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish.
    Becker T; Becker CG
    J Comp Neurol; 2001 Apr; 433(1):131-47. PubMed ID: 11283955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Axonal regeneration of descending brain neurons in larval lamprey demonstrated by retrograde double labeling.
    Zhang L; McClellan AD
    J Comp Neurol; 1999 Aug; 410(4):612-26. PubMed ID: 10398052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anatomical and functional recovery following spinal cord transection in the chick embryo.
    Shimizu I; Oppenheim RW; O'Brien M; Shneiderman A
    J Neurobiol; 1990 Sep; 21(6):918-37. PubMed ID: 2077104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.