These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24894756)
1. Intra-specific variability in the response of maize to arsenic exposure. Requejo R; Tena M Environ Sci Pollut Res Int; 2014 Sep; 21(18):10574-82. PubMed ID: 24894756 [TBL] [Abstract][Full Text] [Related]
2. Influence of glutathione chemical effectors in the response of maize to arsenic exposure. Requejo R; Tena M J Plant Physiol; 2012 May; 169(7):649-56. PubMed ID: 22418430 [TBL] [Abstract][Full Text] [Related]
3. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings. Hou M; Li M; Yang X; Pan R Bull Environ Contam Toxicol; 2019 Mar; 102(3):425-431. PubMed ID: 30683955 [TBL] [Abstract][Full Text] [Related]
4. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. Yu Y; Zhang S; Huang H; Luo L; Wen B J Agric Food Chem; 2009 May; 57(9):3695-701. PubMed ID: 19296577 [TBL] [Abstract][Full Text] [Related]
5. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775 [TBL] [Abstract][Full Text] [Related]
6. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Quaghebeur M; Rengel Z Plant Physiol; 2003 Jul; 132(3):1600-9. PubMed ID: 12857839 [TBL] [Abstract][Full Text] [Related]
7. Influence of Rhizophagus irregularis inoculation and phosphorus application on growth and arsenic accumulation in maize (Zea mays L.) cultivated on an arsenic-contaminated soil. Cattani I; Beone GM; Gonnelli C Environ Sci Pollut Res Int; 2015 May; 22(9):6570-7. PubMed ID: 25716900 [TBL] [Abstract][Full Text] [Related]
8. Aluminum tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation. Giannakoula A; Moustakas M; Mylona P; Papadakis I; Yupsanis T J Plant Physiol; 2008 Mar; 165(4):385-96. PubMed ID: 17646031 [TBL] [Abstract][Full Text] [Related]
9. Untying arsenite tolerance mechanisms in contrasting maize genotypes attributed to NIPs-mediated controlled influx and root-to-shoot translocation, redox homeostasis and phytochelatin-mediated detoxification pathway. Saha S; Adhikari A; Ghosh PK; Shaw AK; Roy D; Choubey S; Basuli D; Tarafder M; Roy S; Hossain Z Chemosphere; 2024 Aug; 362():142647. PubMed ID: 38897322 [TBL] [Abstract][Full Text] [Related]
10. Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Ren JH; Sun HJ; Wang SF; Luo J; Ma LQ Chemosphere; 2014 Dec; 117():737-44. PubMed ID: 25461942 [TBL] [Abstract][Full Text] [Related]
11. Foliar spray of TiO Lian J; Zhao L; Wu J; Xiong H; Bao Y; Zeb A; Tang J; Liu W Chemosphere; 2020 Jan; 239():124794. PubMed ID: 31521929 [TBL] [Abstract][Full Text] [Related]
12. Speciation and uptake of arsenic accumulated by corn seedlings using XAS and DRC-ICP-MS. Parsons JG; Martinez-Martinez A; Peralta-Videa JR; Gardea-Torresdey JL Chemosphere; 2008 Feb; 70(11):2076-83. PubMed ID: 17928032 [TBL] [Abstract][Full Text] [Related]
13. Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings. Fu QL; Blaney L; Zhou DM Environ Pollut; 2016 Dec; 219():210-218. PubMed ID: 27814537 [TBL] [Abstract][Full Text] [Related]
14. Mitigation of arsenic toxicity and accumulation in hydroponically grown rice seedlings by co-inoculation with arsenite-oxidizing and cadmium-tolerant bacteria. Thongnok S; Siripornadulsil W; Siripornadulsil S Ecotoxicol Environ Saf; 2018 Oct; 162():591-602. PubMed ID: 30031320 [TBL] [Abstract][Full Text] [Related]
15. Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. Wang H; Cui S; Ma L; Wang Z; Wang H Ecotoxicol Environ Saf; 2021 Sep; 221():112415. PubMed ID: 34171691 [TBL] [Abstract][Full Text] [Related]
16. Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. Gupta DK; Tripathi RD; Mishra S; Srivastava S; Dwivedi S; Rai UN; Yang XE; Huanji H; Inouhe M J Environ Biol; 2008 May; 29(3):281-6. PubMed ID: 18972678 [TBL] [Abstract][Full Text] [Related]
17. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Requejo R; Tena M Proteomics; 2006 Apr; 6 Suppl 1():S156-62. PubMed ID: 16534746 [TBL] [Abstract][Full Text] [Related]
18. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.). Liu DH; Jiang WS; Hou WQ J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748 [TBL] [Abstract][Full Text] [Related]
19. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Saatz J; Vetterlein D; Mattusch J; Otto M; Daus B Environ Pollut; 2015 Sep; 204():32-8. PubMed ID: 25898235 [TBL] [Abstract][Full Text] [Related]