These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 24894834)
1. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Pant BD; Pant P; Erban A; Huhman D; Kopka J; Scheible WR Plant Cell Environ; 2015 Jan; 38(1):172-87. PubMed ID: 24894834 [TBL] [Abstract][Full Text] [Related]
3. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Nilsson L; Müller R; Nielsen TH Plant Cell Environ; 2007 Dec; 30(12):1499-512. PubMed ID: 17927693 [TBL] [Abstract][Full Text] [Related]
4. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Bari R; Datt Pant B; Stitt M; Scheible WR Plant Physiol; 2006 Jul; 141(3):988-99. PubMed ID: 16679424 [TBL] [Abstract][Full Text] [Related]
5. Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene. Sega P; Kruszka K; Szewc Ł; Szweykowska-Kulińska Z; Pacak A Plant Mol Biol; 2020 Jan; 102(1-2):73-88. PubMed ID: 31745747 [TBL] [Abstract][Full Text] [Related]
6. SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. Osorio MB; Ng S; Berkowitz O; De Clercq I; Mao C; Shou H; Whelan J; Jost R Plant Physiol; 2019 Sep; 181(1):332-352. PubMed ID: 31262954 [TBL] [Abstract][Full Text] [Related]
7. The ARF7 and ARF19 Transcription Factors Positively Regulate Huang KL; Ma GJ; Zhang ML; Xiong H; Wu H; Zhao CZ; Liu CS; Jia HX; Chen L; Kjorven JO; Li XB; Ren F Plant Physiol; 2018 Sep; 178(1):413-427. PubMed ID: 30026290 [TBL] [Abstract][Full Text] [Related]
8. The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. Rouached H; Secco D; Arpat B; Poirier Y BMC Plant Biol; 2011 Jan; 11():19. PubMed ID: 21261953 [TBL] [Abstract][Full Text] [Related]
9. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. Khan GA; Bouraine S; Wege S; Li Y; de Carbonnel M; Berthomieu P; Poirier Y; Rouached H J Exp Bot; 2014 Mar; 65(3):871-84. PubMed ID: 24420568 [TBL] [Abstract][Full Text] [Related]
10. pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Aung K; Lin SI; Wu CC; Huang YT; Su CL; Chiou TJ Plant Physiol; 2006 Jul; 141(3):1000-11. PubMed ID: 16679417 [TBL] [Abstract][Full Text] [Related]
11. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis. Bussell JD; Keech O; Fenske R; Smith SM Plant J; 2013 Aug; 75(4):578-91. PubMed ID: 23621281 [TBL] [Abstract][Full Text] [Related]
12. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Valdés-López O; Arenas-Huertero C; Ramírez M; Girard L; Sánchez F; Vance CP; Luis Reyes J; Hernández G Plant Cell Environ; 2008 Dec; 31(12):1834-43. PubMed ID: 18771575 [TBL] [Abstract][Full Text] [Related]
13. Elucidating the unknown transcriptional responses and PHR1-mediated biotic and abiotic stress tolerance during phosphorus limitation. Scheible WR; Pant P; Pant BD; Krom N; Allen RD; Mysore KS J Exp Bot; 2023 Mar; 74(6):2083-2111. PubMed ID: 36629302 [TBL] [Abstract][Full Text] [Related]
14. PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Liu TY; Huang TK; Tseng CY; Lai YS; Lin SI; Lin WY; Chen JW; Chiou TJ Plant Cell; 2012 May; 24(5):2168-83. PubMed ID: 22634761 [TBL] [Abstract][Full Text] [Related]
15. Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling. Yan H; Yoo MJ; Koh J; Liu L; Chen Y; Acikgoz D; Wang Q; Chen S J Proteome Res; 2014 Dec; 13(12):5751-66. PubMed ID: 25311705 [TBL] [Abstract][Full Text] [Related]
16. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Peng M; Hannam C; Gu H; Bi YM; Rothstein SJ Plant J; 2007 Apr; 50(2):320-37. PubMed ID: 17355433 [TBL] [Abstract][Full Text] [Related]
17. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Malitsky S; Blum E; Less H; Venger I; Elbaz M; Morin S; Eshed Y; Aharoni A Plant Physiol; 2008 Dec; 148(4):2021-49. PubMed ID: 18829985 [TBL] [Abstract][Full Text] [Related]
18. The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux. Lehmann M; Schwarzländer M; Obata T; Sirikantaramas S; Burow M; Olsen CE; Tohge T; Fricker MD; Møller BL; Fernie AR; Sweetlove LJ; Laxa M Mol Plant; 2009 May; 2(3):390-406. PubMed ID: 19825624 [TBL] [Abstract][Full Text] [Related]
19. Effects of AOX1a deficiency on plant growth, gene expression of respiratory components and metabolic profile under low-nitrogen stress in Arabidopsis thaliana. Watanabe CK; Hachiya T; Takahara K; Kawai-Yamada M; Uchimiya H; Uesono Y; Terashima I; Noguchi K Plant Cell Physiol; 2010 May; 51(5):810-22. PubMed ID: 20304787 [TBL] [Abstract][Full Text] [Related]
20. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]